12 KiB
12 KiB
NetworkX Graph Visualization
Basic Drawing with Matplotlib
Simple Visualization
import networkx as nx
import matplotlib.pyplot as plt
# Create and draw graph
G = nx.karate_club_graph()
nx.draw(G)
plt.show()
# Save to file
nx.draw(G)
plt.savefig('graph.png', dpi=300, bbox_inches='tight')
plt.close()
Drawing with Labels
# Draw with node labels
nx.draw(G, with_labels=True)
plt.show()
# Custom labels
labels = {i: f"Node {i}" for i in G.nodes()}
nx.draw(G, labels=labels, with_labels=True)
plt.show()
Layout Algorithms
Spring Layout (Force-Directed)
# Fruchterman-Reingold force-directed algorithm
pos = nx.spring_layout(G, seed=42)
nx.draw(G, pos=pos, with_labels=True)
plt.show()
# With parameters
pos = nx.spring_layout(G, k=0.5, iterations=50, seed=42)
Circular Layout
# Arrange nodes in circle
pos = nx.circular_layout(G)
nx.draw(G, pos=pos, with_labels=True)
plt.show()
Random Layout
# Random positioning
pos = nx.random_layout(G, seed=42)
nx.draw(G, pos=pos, with_labels=True)
plt.show()
Shell Layout
# Concentric circles
pos = nx.shell_layout(G)
nx.draw(G, pos=pos, with_labels=True)
plt.show()
# With custom shells
shells = [[0, 1, 2], [3, 4, 5, 6], [7, 8, 9]]
pos = nx.shell_layout(G, nlist=shells)
Spectral Layout
# Use eigenvectors of graph Laplacian
pos = nx.spectral_layout(G)
nx.draw(G, pos=pos, with_labels=True)
plt.show()
Kamada-Kawai Layout
# Energy-based layout
pos = nx.kamada_kawai_layout(G)
nx.draw(G, pos=pos, with_labels=True)
plt.show()
Planar Layout
# For planar graphs only
if nx.is_planar(G):
pos = nx.planar_layout(G)
nx.draw(G, pos=pos, with_labels=True)
plt.show()
Tree Layouts
# For tree graphs
if nx.is_tree(G):
pos = nx.nx_agraph.graphviz_layout(G, prog='dot')
nx.draw(G, pos=pos, with_labels=True)
plt.show()
Customizing Node Appearance
Node Colors
# Single color
nx.draw(G, node_color='red')
# Different colors per node
node_colors = ['red' if G.degree(n) > 5 else 'blue' for n in G.nodes()]
nx.draw(G, node_color=node_colors)
# Color by attribute
colors = [G.nodes[n].get('value', 0) for n in G.nodes()]
nx.draw(G, node_color=colors, cmap=plt.cm.viridis)
plt.colorbar()
plt.show()
Node Sizes
# Size by degree
node_sizes = [100 * G.degree(n) for n in G.nodes()]
nx.draw(G, node_size=node_sizes)
# Size by centrality
centrality = nx.degree_centrality(G)
node_sizes = [3000 * centrality[n] for n in G.nodes()]
nx.draw(G, node_size=node_sizes)
Node Shapes
# Draw nodes separately with different shapes
pos = nx.spring_layout(G)
# Circle nodes
nx.draw_networkx_nodes(G, pos, nodelist=[0, 1, 2],
node_shape='o', node_color='red')
# Square nodes
nx.draw_networkx_nodes(G, pos, nodelist=[3, 4, 5],
node_shape='s', node_color='blue')
nx.draw_networkx_edges(G, pos)
nx.draw_networkx_labels(G, pos)
plt.show()
Node Borders
nx.draw(G, pos=pos,
node_color='lightblue',
edgecolors='black', # Node border color
linewidths=2) # Node border width
plt.show()
Customizing Edge Appearance
Edge Colors
# Single color
nx.draw(G, edge_color='gray')
# Different colors per edge
edge_colors = ['red' if G[u][v].get('weight', 1) > 0.5 else 'blue'
for u, v in G.edges()]
nx.draw(G, edge_color=edge_colors)
# Color by weight
edges = G.edges()
weights = [G[u][v].get('weight', 1) for u, v in edges]
nx.draw(G, edge_color=weights, edge_cmap=plt.cm.Reds)
Edge Widths
# Width by weight
edge_widths = [3 * G[u][v].get('weight', 1) for u, v in G.edges()]
nx.draw(G, width=edge_widths)
# Width by betweenness
edge_betweenness = nx.edge_betweenness_centrality(G)
edge_widths = [5 * edge_betweenness[(u, v)] for u, v in G.edges()]
nx.draw(G, width=edge_widths)
Edge Styles
# Dashed edges
nx.draw(G, style='dashed')
# Different styles per edge
pos = nx.spring_layout(G)
strong_edges = [(u, v) for u, v in G.edges() if G[u][v].get('weight', 0) > 0.5]
weak_edges = [(u, v) for u, v in G.edges() if G[u][v].get('weight', 0) <= 0.5]
nx.draw_networkx_nodes(G, pos)
nx.draw_networkx_edges(G, pos, edgelist=strong_edges, style='solid', width=2)
nx.draw_networkx_edges(G, pos, edgelist=weak_edges, style='dashed', width=1)
plt.show()
Directed Graphs (Arrows)
# Draw directed graph with arrows
G_directed = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
pos = nx.spring_layout(G_directed)
nx.draw(G_directed, pos=pos, with_labels=True,
arrows=True,
arrowsize=20,
arrowstyle='->',
connectionstyle='arc3,rad=0.1')
plt.show()
Labels and Annotations
Node Labels
pos = nx.spring_layout(G)
# Custom labels
labels = {n: f"N{n}" for n in G.nodes()}
nx.draw_networkx_labels(G, pos, labels=labels, font_size=12, font_color='white')
# Font customization
nx.draw_networkx_labels(G, pos,
font_size=10,
font_family='serif',
font_weight='bold')
Edge Labels
pos = nx.spring_layout(G)
nx.draw_networkx_nodes(G, pos)
nx.draw_networkx_edges(G, pos)
# Edge labels from attributes
edge_labels = nx.get_edge_attributes(G, 'weight')
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels)
plt.show()
# Custom edge labels
edge_labels = {(u, v): f"{u}-{v}" for u, v in G.edges()}
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels)
Advanced Drawing Techniques
Combining Draw Functions
# Full control by separating components
pos = nx.spring_layout(G, seed=42)
# Draw edges
nx.draw_networkx_edges(G, pos, alpha=0.3, width=1)
# Draw nodes
nx.draw_networkx_nodes(G, pos,
node_color='lightblue',
node_size=500,
edgecolors='black')
# Draw labels
nx.draw_networkx_labels(G, pos, font_size=10)
# Remove axis
plt.axis('off')
plt.tight_layout()
plt.show()
Subgraph Highlighting
pos = nx.spring_layout(G)
# Identify subgraph to highlight
subgraph_nodes = [1, 2, 3, 4]
subgraph = G.subgraph(subgraph_nodes)
# Draw main graph
nx.draw_networkx_nodes(G, pos, node_color='lightgray', node_size=300)
nx.draw_networkx_edges(G, pos, alpha=0.2)
# Highlight subgraph
nx.draw_networkx_nodes(subgraph, pos, node_color='red', node_size=500)
nx.draw_networkx_edges(subgraph, pos, edge_color='red', width=2)
nx.draw_networkx_labels(G, pos)
plt.axis('off')
plt.show()
Community Coloring
from networkx.algorithms import community
# Detect communities
communities = community.greedy_modularity_communities(G)
# Assign colors
color_map = {}
colors = ['red', 'blue', 'green', 'yellow', 'purple', 'orange']
for i, comm in enumerate(communities):
for node in comm:
color_map[node] = colors[i % len(colors)]
node_colors = [color_map[n] for n in G.nodes()]
pos = nx.spring_layout(G)
nx.draw(G, pos=pos, node_color=node_colors, with_labels=True)
plt.show()
Creating Publication-Quality Figures
High Resolution Export
plt.figure(figsize=(12, 8))
pos = nx.spring_layout(G, seed=42)
nx.draw(G, pos=pos,
node_color='lightblue',
node_size=500,
edge_color='gray',
width=1,
with_labels=True,
font_size=10)
plt.title('Graph Visualization', fontsize=16)
plt.axis('off')
plt.tight_layout()
plt.savefig('publication_graph.png', dpi=300, bbox_inches='tight')
plt.savefig('publication_graph.pdf', bbox_inches='tight') # Vector format
plt.close()
Multi-Panel Figures
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
# Different layouts
layouts = [nx.circular_layout(G), nx.spring_layout(G), nx.spectral_layout(G)]
titles = ['Circular', 'Spring', 'Spectral']
for ax, pos, title in zip(axes, layouts, titles):
nx.draw(G, pos=pos, ax=ax, with_labels=True, node_color='lightblue')
ax.set_title(title)
ax.axis('off')
plt.tight_layout()
plt.savefig('layouts_comparison.png', dpi=300)
plt.close()
Interactive Visualization Libraries
Plotly (Interactive)
import plotly.graph_objects as go
# Create positions
pos = nx.spring_layout(G)
# Edge trace
edge_x = []
edge_y = []
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=0.5, color='#888'),
hoverinfo='none',
mode='lines')
# Node trace
node_x = [pos[node][0] for node in G.nodes()]
node_y = [pos[node][1] for node in G.nodes()]
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers',
hoverinfo='text',
marker=dict(
showscale=True,
colorscale='YlGnBu',
size=10,
colorbar=dict(thickness=15, title='Node Connections'),
line_width=2))
# Color by degree
node_adjacencies = [len(list(G.neighbors(node))) for node in G.nodes()]
node_trace.marker.color = node_adjacencies
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
showlegend=False,
hovermode='closest',
margin=dict(b=0, l=0, r=0, t=0)))
fig.show()
PyVis (Interactive HTML)
from pyvis.network import Network
# Create network
net = Network(notebook=True, height='750px', width='100%')
# Add nodes and edges from NetworkX
net.from_nx(G)
# Customize
net.show_buttons(filter_=['physics'])
# Save
net.show('graph.html')
Graphviz (via pydot)
# Requires graphviz and pydot
from networkx.drawing.nx_pydot import graphviz_layout
pos = graphviz_layout(G, prog='neato') # neato, dot, fdp, sfdp, circo, twopi
nx.draw(G, pos=pos, with_labels=True)
plt.show()
# Export to graphviz
nx.drawing.nx_pydot.write_dot(G, 'graph.dot')
Bipartite Graph Visualization
Two-Set Layout
from networkx.algorithms import bipartite
# Create bipartite graph
B = nx.Graph()
B.add_nodes_from([1, 2, 3, 4], bipartite=0)
B.add_nodes_from(['a', 'b', 'c', 'd', 'e'], bipartite=1)
B.add_edges_from([(1, 'a'), (1, 'b'), (2, 'b'), (2, 'c'), (3, 'd'), (4, 'e')])
# Layout with two columns
pos = {}
top_nodes = [n for n, d in B.nodes(data=True) if d['bipartite'] == 0]
bottom_nodes = [n for n, d in B.nodes(data=True) if d['bipartite'] == 1]
pos.update({node: (0, i) for i, node in enumerate(top_nodes)})
pos.update({node: (1, i) for i, node in enumerate(bottom_nodes)})
nx.draw(B, pos=pos, with_labels=True,
node_color=['lightblue' if B.nodes[n]['bipartite'] == 0 else 'lightgreen'
for n in B.nodes()])
plt.show()
3D Visualization
3D Network Plot
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# 3D spring layout
pos = nx.spring_layout(G, dim=3, seed=42)
# Extract coordinates
node_xyz = np.array([pos[v] for v in G.nodes()])
edge_xyz = np.array([(pos[u], pos[v]) for u, v in G.edges()])
# Create figure
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
# Plot edges
for vizedge in edge_xyz:
ax.plot(*vizedge.T, color='gray', alpha=0.5)
# Plot nodes
ax.scatter(*node_xyz.T, s=100, c='lightblue', edgecolors='black')
# Labels
for i, (x, y, z) in enumerate(node_xyz):
ax.text(x, y, z, str(i))
ax.set_axis_off()
plt.show()
Best Practices
Performance
- For large graphs (>1000 nodes), use simpler layouts (circular, random)
- Use
alphaparameter to make dense edges more visible - Consider downsampling or showing subgraphs for very large networks
Aesthetics
- Use consistent color schemes
- Scale node sizes meaningfully (e.g., by degree or importance)
- Keep labels readable (adjust font size and position)
- Use white space effectively (adjust figure size)
Reproducibility
- Always set random seeds for layouts:
nx.spring_layout(G, seed=42) - Save layout positions for consistency across multiple plots
- Document color/size mappings in legends or captions
File Formats
- PNG for raster images (web, presentations)
- PDF for vector graphics (publications, scalable)
- SVG for web and interactive applications
- HTML for interactive visualizations