# NetworkX Graph Visualization ## Basic Drawing with Matplotlib ### Simple Visualization ```python import networkx as nx import matplotlib.pyplot as plt # Create and draw graph G = nx.karate_club_graph() nx.draw(G) plt.show() # Save to file nx.draw(G) plt.savefig('graph.png', dpi=300, bbox_inches='tight') plt.close() ``` ### Drawing with Labels ```python # Draw with node labels nx.draw(G, with_labels=True) plt.show() # Custom labels labels = {i: f"Node {i}" for i in G.nodes()} nx.draw(G, labels=labels, with_labels=True) plt.show() ``` ## Layout Algorithms ### Spring Layout (Force-Directed) ```python # Fruchterman-Reingold force-directed algorithm pos = nx.spring_layout(G, seed=42) nx.draw(G, pos=pos, with_labels=True) plt.show() # With parameters pos = nx.spring_layout(G, k=0.5, iterations=50, seed=42) ``` ### Circular Layout ```python # Arrange nodes in circle pos = nx.circular_layout(G) nx.draw(G, pos=pos, with_labels=True) plt.show() ``` ### Random Layout ```python # Random positioning pos = nx.random_layout(G, seed=42) nx.draw(G, pos=pos, with_labels=True) plt.show() ``` ### Shell Layout ```python # Concentric circles pos = nx.shell_layout(G) nx.draw(G, pos=pos, with_labels=True) plt.show() # With custom shells shells = [[0, 1, 2], [3, 4, 5, 6], [7, 8, 9]] pos = nx.shell_layout(G, nlist=shells) ``` ### Spectral Layout ```python # Use eigenvectors of graph Laplacian pos = nx.spectral_layout(G) nx.draw(G, pos=pos, with_labels=True) plt.show() ``` ### Kamada-Kawai Layout ```python # Energy-based layout pos = nx.kamada_kawai_layout(G) nx.draw(G, pos=pos, with_labels=True) plt.show() ``` ### Planar Layout ```python # For planar graphs only if nx.is_planar(G): pos = nx.planar_layout(G) nx.draw(G, pos=pos, with_labels=True) plt.show() ``` ### Tree Layouts ```python # For tree graphs if nx.is_tree(G): pos = nx.nx_agraph.graphviz_layout(G, prog='dot') nx.draw(G, pos=pos, with_labels=True) plt.show() ``` ## Customizing Node Appearance ### Node Colors ```python # Single color nx.draw(G, node_color='red') # Different colors per node node_colors = ['red' if G.degree(n) > 5 else 'blue' for n in G.nodes()] nx.draw(G, node_color=node_colors) # Color by attribute colors = [G.nodes[n].get('value', 0) for n in G.nodes()] nx.draw(G, node_color=colors, cmap=plt.cm.viridis) plt.colorbar() plt.show() ``` ### Node Sizes ```python # Size by degree node_sizes = [100 * G.degree(n) for n in G.nodes()] nx.draw(G, node_size=node_sizes) # Size by centrality centrality = nx.degree_centrality(G) node_sizes = [3000 * centrality[n] for n in G.nodes()] nx.draw(G, node_size=node_sizes) ``` ### Node Shapes ```python # Draw nodes separately with different shapes pos = nx.spring_layout(G) # Circle nodes nx.draw_networkx_nodes(G, pos, nodelist=[0, 1, 2], node_shape='o', node_color='red') # Square nodes nx.draw_networkx_nodes(G, pos, nodelist=[3, 4, 5], node_shape='s', node_color='blue') nx.draw_networkx_edges(G, pos) nx.draw_networkx_labels(G, pos) plt.show() ``` ### Node Borders ```python nx.draw(G, pos=pos, node_color='lightblue', edgecolors='black', # Node border color linewidths=2) # Node border width plt.show() ``` ## Customizing Edge Appearance ### Edge Colors ```python # Single color nx.draw(G, edge_color='gray') # Different colors per edge edge_colors = ['red' if G[u][v].get('weight', 1) > 0.5 else 'blue' for u, v in G.edges()] nx.draw(G, edge_color=edge_colors) # Color by weight edges = G.edges() weights = [G[u][v].get('weight', 1) for u, v in edges] nx.draw(G, edge_color=weights, edge_cmap=plt.cm.Reds) ``` ### Edge Widths ```python # Width by weight edge_widths = [3 * G[u][v].get('weight', 1) for u, v in G.edges()] nx.draw(G, width=edge_widths) # Width by betweenness edge_betweenness = nx.edge_betweenness_centrality(G) edge_widths = [5 * edge_betweenness[(u, v)] for u, v in G.edges()] nx.draw(G, width=edge_widths) ``` ### Edge Styles ```python # Dashed edges nx.draw(G, style='dashed') # Different styles per edge pos = nx.spring_layout(G) strong_edges = [(u, v) for u, v in G.edges() if G[u][v].get('weight', 0) > 0.5] weak_edges = [(u, v) for u, v in G.edges() if G[u][v].get('weight', 0) <= 0.5] nx.draw_networkx_nodes(G, pos) nx.draw_networkx_edges(G, pos, edgelist=strong_edges, style='solid', width=2) nx.draw_networkx_edges(G, pos, edgelist=weak_edges, style='dashed', width=1) plt.show() ``` ### Directed Graphs (Arrows) ```python # Draw directed graph with arrows G_directed = nx.DiGraph([(1, 2), (2, 3), (3, 1)]) pos = nx.spring_layout(G_directed) nx.draw(G_directed, pos=pos, with_labels=True, arrows=True, arrowsize=20, arrowstyle='->', connectionstyle='arc3,rad=0.1') plt.show() ``` ## Labels and Annotations ### Node Labels ```python pos = nx.spring_layout(G) # Custom labels labels = {n: f"N{n}" for n in G.nodes()} nx.draw_networkx_labels(G, pos, labels=labels, font_size=12, font_color='white') # Font customization nx.draw_networkx_labels(G, pos, font_size=10, font_family='serif', font_weight='bold') ``` ### Edge Labels ```python pos = nx.spring_layout(G) nx.draw_networkx_nodes(G, pos) nx.draw_networkx_edges(G, pos) # Edge labels from attributes edge_labels = nx.get_edge_attributes(G, 'weight') nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) plt.show() # Custom edge labels edge_labels = {(u, v): f"{u}-{v}" for u, v in G.edges()} nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels) ``` ## Advanced Drawing Techniques ### Combining Draw Functions ```python # Full control by separating components pos = nx.spring_layout(G, seed=42) # Draw edges nx.draw_networkx_edges(G, pos, alpha=0.3, width=1) # Draw nodes nx.draw_networkx_nodes(G, pos, node_color='lightblue', node_size=500, edgecolors='black') # Draw labels nx.draw_networkx_labels(G, pos, font_size=10) # Remove axis plt.axis('off') plt.tight_layout() plt.show() ``` ### Subgraph Highlighting ```python pos = nx.spring_layout(G) # Identify subgraph to highlight subgraph_nodes = [1, 2, 3, 4] subgraph = G.subgraph(subgraph_nodes) # Draw main graph nx.draw_networkx_nodes(G, pos, node_color='lightgray', node_size=300) nx.draw_networkx_edges(G, pos, alpha=0.2) # Highlight subgraph nx.draw_networkx_nodes(subgraph, pos, node_color='red', node_size=500) nx.draw_networkx_edges(subgraph, pos, edge_color='red', width=2) nx.draw_networkx_labels(G, pos) plt.axis('off') plt.show() ``` ### Community Coloring ```python from networkx.algorithms import community # Detect communities communities = community.greedy_modularity_communities(G) # Assign colors color_map = {} colors = ['red', 'blue', 'green', 'yellow', 'purple', 'orange'] for i, comm in enumerate(communities): for node in comm: color_map[node] = colors[i % len(colors)] node_colors = [color_map[n] for n in G.nodes()] pos = nx.spring_layout(G) nx.draw(G, pos=pos, node_color=node_colors, with_labels=True) plt.show() ``` ## Creating Publication-Quality Figures ### High Resolution Export ```python plt.figure(figsize=(12, 8)) pos = nx.spring_layout(G, seed=42) nx.draw(G, pos=pos, node_color='lightblue', node_size=500, edge_color='gray', width=1, with_labels=True, font_size=10) plt.title('Graph Visualization', fontsize=16) plt.axis('off') plt.tight_layout() plt.savefig('publication_graph.png', dpi=300, bbox_inches='tight') plt.savefig('publication_graph.pdf', bbox_inches='tight') # Vector format plt.close() ``` ### Multi-Panel Figures ```python fig, axes = plt.subplots(1, 3, figsize=(18, 6)) # Different layouts layouts = [nx.circular_layout(G), nx.spring_layout(G), nx.spectral_layout(G)] titles = ['Circular', 'Spring', 'Spectral'] for ax, pos, title in zip(axes, layouts, titles): nx.draw(G, pos=pos, ax=ax, with_labels=True, node_color='lightblue') ax.set_title(title) ax.axis('off') plt.tight_layout() plt.savefig('layouts_comparison.png', dpi=300) plt.close() ``` ## Interactive Visualization Libraries ### Plotly (Interactive) ```python import plotly.graph_objects as go # Create positions pos = nx.spring_layout(G) # Edge trace edge_x = [] edge_y = [] for edge in G.edges(): x0, y0 = pos[edge[0]] x1, y1 = pos[edge[1]] edge_x.extend([x0, x1, None]) edge_y.extend([y0, y1, None]) edge_trace = go.Scatter( x=edge_x, y=edge_y, line=dict(width=0.5, color='#888'), hoverinfo='none', mode='lines') # Node trace node_x = [pos[node][0] for node in G.nodes()] node_y = [pos[node][1] for node in G.nodes()] node_trace = go.Scatter( x=node_x, y=node_y, mode='markers', hoverinfo='text', marker=dict( showscale=True, colorscale='YlGnBu', size=10, colorbar=dict(thickness=15, title='Node Connections'), line_width=2)) # Color by degree node_adjacencies = [len(list(G.neighbors(node))) for node in G.nodes()] node_trace.marker.color = node_adjacencies fig = go.Figure(data=[edge_trace, node_trace], layout=go.Layout( showlegend=False, hovermode='closest', margin=dict(b=0, l=0, r=0, t=0))) fig.show() ``` ### PyVis (Interactive HTML) ```python from pyvis.network import Network # Create network net = Network(notebook=True, height='750px', width='100%') # Add nodes and edges from NetworkX net.from_nx(G) # Customize net.show_buttons(filter_=['physics']) # Save net.show('graph.html') ``` ### Graphviz (via pydot) ```python # Requires graphviz and pydot from networkx.drawing.nx_pydot import graphviz_layout pos = graphviz_layout(G, prog='neato') # neato, dot, fdp, sfdp, circo, twopi nx.draw(G, pos=pos, with_labels=True) plt.show() # Export to graphviz nx.drawing.nx_pydot.write_dot(G, 'graph.dot') ``` ## Bipartite Graph Visualization ### Two-Set Layout ```python from networkx.algorithms import bipartite # Create bipartite graph B = nx.Graph() B.add_nodes_from([1, 2, 3, 4], bipartite=0) B.add_nodes_from(['a', 'b', 'c', 'd', 'e'], bipartite=1) B.add_edges_from([(1, 'a'), (1, 'b'), (2, 'b'), (2, 'c'), (3, 'd'), (4, 'e')]) # Layout with two columns pos = {} top_nodes = [n for n, d in B.nodes(data=True) if d['bipartite'] == 0] bottom_nodes = [n for n, d in B.nodes(data=True) if d['bipartite'] == 1] pos.update({node: (0, i) for i, node in enumerate(top_nodes)}) pos.update({node: (1, i) for i, node in enumerate(bottom_nodes)}) nx.draw(B, pos=pos, with_labels=True, node_color=['lightblue' if B.nodes[n]['bipartite'] == 0 else 'lightgreen' for n in B.nodes()]) plt.show() ``` ## 3D Visualization ### 3D Network Plot ```python import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D # 3D spring layout pos = nx.spring_layout(G, dim=3, seed=42) # Extract coordinates node_xyz = np.array([pos[v] for v in G.nodes()]) edge_xyz = np.array([(pos[u], pos[v]) for u, v in G.edges()]) # Create figure fig = plt.figure(figsize=(10, 8)) ax = fig.add_subplot(111, projection='3d') # Plot edges for vizedge in edge_xyz: ax.plot(*vizedge.T, color='gray', alpha=0.5) # Plot nodes ax.scatter(*node_xyz.T, s=100, c='lightblue', edgecolors='black') # Labels for i, (x, y, z) in enumerate(node_xyz): ax.text(x, y, z, str(i)) ax.set_axis_off() plt.show() ``` ## Best Practices ### Performance - For large graphs (>1000 nodes), use simpler layouts (circular, random) - Use `alpha` parameter to make dense edges more visible - Consider downsampling or showing subgraphs for very large networks ### Aesthetics - Use consistent color schemes - Scale node sizes meaningfully (e.g., by degree or importance) - Keep labels readable (adjust font size and position) - Use white space effectively (adjust figure size) ### Reproducibility - Always set random seeds for layouts: `nx.spring_layout(G, seed=42)` - Save layout positions for consistency across multiple plots - Document color/size mappings in legends or captions ### File Formats - PNG for raster images (web, presentations) - PDF for vector graphics (publications, scalable) - SVG for web and interactive applications - HTML for interactive visualizations