Files
2025-11-30 08:30:10 +08:00

564 lines
12 KiB
Markdown

# Matplotlib Common Issues and Solutions
Troubleshooting guide for frequently encountered matplotlib problems.
## Display and Backend Issues
### Issue: Plots Not Showing
**Problem:** `plt.show()` doesn't display anything
**Solutions:**
```python
# 1. Check if backend is properly set (for interactive use)
import matplotlib
print(matplotlib.get_backend())
# 2. Try different backends
matplotlib.use('TkAgg') # or 'Qt5Agg', 'MacOSX'
import matplotlib.pyplot as plt
# 3. In Jupyter notebooks, use magic command
%matplotlib inline # Static images
# or
%matplotlib widget # Interactive plots
# 4. Ensure plt.show() is called
plt.plot([1, 2, 3])
plt.show()
```
### Issue: "RuntimeError: main thread is not in main loop"
**Problem:** Interactive mode issues with threading
**Solution:**
```python
# Switch to non-interactive backend
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
# Or turn off interactive mode
plt.ioff()
```
### Issue: Figures Not Updating Interactively
**Problem:** Changes not reflected in interactive windows
**Solution:**
```python
# Enable interactive mode
plt.ion()
# Draw after each change
plt.plot(x, y)
plt.draw()
plt.pause(0.001) # Brief pause to update display
```
## Layout and Spacing Issues
### Issue: Overlapping Labels and Titles
**Problem:** Labels, titles, or tick labels overlap or get cut off
**Solutions:**
```python
# Solution 1: Constrained layout (RECOMMENDED)
fig, ax = plt.subplots(constrained_layout=True)
# Solution 2: Tight layout
fig, ax = plt.subplots()
plt.tight_layout()
# Solution 3: Adjust margins manually
plt.subplots_adjust(left=0.15, right=0.95, top=0.95, bottom=0.15)
# Solution 4: Save with bbox_inches='tight'
plt.savefig('figure.png', bbox_inches='tight')
# Solution 5: Rotate long tick labels
ax.set_xticklabels(labels, rotation=45, ha='right')
```
### Issue: Colorbar Affects Subplot Size
**Problem:** Adding colorbar shrinks the plot
**Solution:**
```python
# Solution 1: Use constrained layout
fig, ax = plt.subplots(constrained_layout=True)
im = ax.imshow(data)
plt.colorbar(im, ax=ax)
# Solution 2: Manually specify colorbar dimensions
from mpl_toolkits.axes_grid1 import make_axes_locatable
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size="5%", pad=0.05)
plt.colorbar(im, cax=cax)
# Solution 3: For multiple subplots, share colorbar
fig, axes = plt.subplots(1, 3, figsize=(15, 4))
for ax in axes:
im = ax.imshow(data)
fig.colorbar(im, ax=axes.ravel().tolist(), shrink=0.95)
```
### Issue: Subplots Too Close Together
**Problem:** Multiple subplots overlapping
**Solution:**
```python
# Solution 1: Use constrained_layout
fig, axes = plt.subplots(2, 2, constrained_layout=True)
# Solution 2: Adjust spacing with subplots_adjust
fig, axes = plt.subplots(2, 2)
plt.subplots_adjust(hspace=0.4, wspace=0.4)
# Solution 3: Specify spacing in tight_layout
plt.tight_layout(h_pad=2.0, w_pad=2.0)
```
## Memory and Performance Issues
### Issue: Memory Leak with Multiple Figures
**Problem:** Memory usage grows when creating many figures
**Solution:**
```python
# Close figures explicitly
fig, ax = plt.subplots()
ax.plot(x, y)
plt.savefig('plot.png')
plt.close(fig) # or plt.close('all')
# Clear current figure without closing
plt.clf()
# Clear current axes
plt.cla()
```
### Issue: Large File Sizes
**Problem:** Saved figures are too large
**Solutions:**
```python
# Solution 1: Reduce DPI
plt.savefig('figure.png', dpi=150) # Instead of 300
# Solution 2: Use rasterization for complex plots
ax.plot(x, y, rasterized=True)
# Solution 3: Use vector format for simple plots
plt.savefig('figure.pdf') # or .svg
# Solution 4: Compress PNG
plt.savefig('figure.png', dpi=300, optimize=True)
```
### Issue: Slow Plotting with Large Datasets
**Problem:** Plotting takes too long with many points
**Solutions:**
```python
# Solution 1: Downsample data
from scipy.signal import decimate
y_downsampled = decimate(y, 10) # Keep every 10th point
# Solution 2: Use rasterization
ax.plot(x, y, rasterized=True)
# Solution 3: Use line simplification
ax.plot(x, y)
for line in ax.get_lines():
line.set_rasterized(True)
# Solution 4: For scatter plots, consider hexbin or 2d histogram
ax.hexbin(x, y, gridsize=50, cmap='viridis')
```
## Font and Text Issues
### Issue: Font Warnings
**Problem:** "findfont: Font family [...] not found"
**Solutions:**
```python
# Solution 1: Use available fonts
from matplotlib.font_manager import findfont, FontProperties
print(findfont(FontProperties(family='sans-serif')))
# Solution 2: Rebuild font cache
import matplotlib.font_manager
matplotlib.font_manager._rebuild()
# Solution 3: Suppress warnings
import warnings
warnings.filterwarnings("ignore", category=UserWarning)
# Solution 4: Specify fallback fonts
plt.rcParams['font.sans-serif'] = ['Arial', 'DejaVu Sans', 'sans-serif']
```
### Issue: LaTeX Rendering Errors
**Problem:** Math text not rendering correctly
**Solutions:**
```python
# Solution 1: Use raw strings with r prefix
ax.set_xlabel(r'$\alpha$') # Not '\alpha'
# Solution 2: Escape backslashes in regular strings
ax.set_xlabel('$\\alpha$')
# Solution 3: Disable LaTeX if not installed
plt.rcParams['text.usetex'] = False
# Solution 4: Use mathtext instead of full LaTeX
# Mathtext is always available, no LaTeX installation needed
ax.text(x, y, r'$\int_0^\infty e^{-x} dx$')
```
### Issue: Text Cut Off or Outside Figure
**Problem:** Labels or annotations appear outside figure bounds
**Solutions:**
```python
# Solution 1: Use bbox_inches='tight'
plt.savefig('figure.png', bbox_inches='tight')
# Solution 2: Adjust figure bounds
plt.subplots_adjust(left=0.15, right=0.85, top=0.85, bottom=0.15)
# Solution 3: Clip text to axes
ax.text(x, y, 'text', clip_on=True)
# Solution 4: Use constrained_layout
fig, ax = plt.subplots(constrained_layout=True)
```
## Color and Colormap Issues
### Issue: Colorbar Not Matching Plot
**Problem:** Colorbar shows different range than data
**Solution:**
```python
# Explicitly set vmin and vmax
im = ax.imshow(data, vmin=0, vmax=1, cmap='viridis')
plt.colorbar(im, ax=ax)
# Or use the same norm for multiple plots
import matplotlib.colors as mcolors
norm = mcolors.Normalize(vmin=data.min(), vmax=data.max())
im1 = ax1.imshow(data1, norm=norm, cmap='viridis')
im2 = ax2.imshow(data2, norm=norm, cmap='viridis')
```
### Issue: Colors Look Wrong
**Problem:** Unexpected colors in plots
**Solutions:**
```python
# Solution 1: Check color specification format
ax.plot(x, y, color='blue') # Correct
ax.plot(x, y, color=(0, 0, 1)) # Correct RGB
ax.plot(x, y, color='#0000FF') # Correct hex
# Solution 2: Verify colormap exists
print(plt.colormaps()) # List available colormaps
# Solution 3: For scatter plots, ensure c shape matches
ax.scatter(x, y, c=colors) # colors should have same length as x, y
# Solution 4: Check if alpha is set correctly
ax.plot(x, y, alpha=1.0) # 0=transparent, 1=opaque
```
### Issue: Reversed Colormap
**Problem:** Colormap direction is backwards
**Solution:**
```python
# Add _r suffix to reverse any colormap
ax.imshow(data, cmap='viridis_r')
```
## Axis and Scale Issues
### Issue: Axis Limits Not Working
**Problem:** `set_xlim` or `set_ylim` not taking effect
**Solutions:**
```python
# Solution 1: Set after plotting
ax.plot(x, y)
ax.set_xlim(0, 10)
ax.set_ylim(-1, 1)
# Solution 2: Disable autoscaling
ax.autoscale(False)
ax.set_xlim(0, 10)
# Solution 3: Use axis method
ax.axis([xmin, xmax, ymin, ymax])
```
### Issue: Log Scale with Zero or Negative Values
**Problem:** ValueError when using log scale with data ≤ 0
**Solutions:**
```python
# Solution 1: Filter out non-positive values
mask = (data > 0)
ax.plot(x[mask], data[mask])
ax.set_yscale('log')
# Solution 2: Use symlog for data with positive and negative values
ax.set_yscale('symlog')
# Solution 3: Add small offset
ax.plot(x, data + 1e-10)
ax.set_yscale('log')
```
### Issue: Dates Not Displaying Correctly
**Problem:** Date axis shows numbers instead of dates
**Solution:**
```python
import matplotlib.dates as mdates
import pandas as pd
# Convert to datetime if needed
dates = pd.to_datetime(date_strings)
ax.plot(dates, values)
# Format date axis
ax.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
ax.xaxis.set_major_locator(mdates.DayLocator(interval=7))
plt.xticks(rotation=45)
```
## Legend Issues
### Issue: Legend Covers Data
**Problem:** Legend obscures important parts of plot
**Solutions:**
```python
# Solution 1: Use 'best' location
ax.legend(loc='best')
# Solution 2: Place outside plot area
ax.legend(bbox_to_anchor=(1.05, 1), loc='upper left')
# Solution 3: Make legend semi-transparent
ax.legend(framealpha=0.7)
# Solution 4: Put legend below plot
ax.legend(bbox_to_anchor=(0.5, -0.15), loc='upper center', ncol=3)
```
### Issue: Too Many Items in Legend
**Problem:** Legend is cluttered with many entries
**Solutions:**
```python
# Solution 1: Only label selected items
for i, (x, y) in enumerate(data):
label = f'Data {i}' if i % 5 == 0 else None
ax.plot(x, y, label=label)
# Solution 2: Use multiple columns
ax.legend(ncol=3)
# Solution 3: Create custom legend with fewer entries
from matplotlib.lines import Line2D
custom_lines = [Line2D([0], [0], color='r'),
Line2D([0], [0], color='b')]
ax.legend(custom_lines, ['Category A', 'Category B'])
# Solution 4: Use separate legend figure
fig_leg = plt.figure(figsize=(3, 2))
ax_leg = fig_leg.add_subplot(111)
ax_leg.legend(*ax.get_legend_handles_labels(), loc='center')
ax_leg.axis('off')
```
## 3D Plot Issues
### Issue: 3D Plots Look Flat
**Problem:** Difficult to perceive depth in 3D plots
**Solutions:**
```python
# Solution 1: Adjust viewing angle
ax.view_init(elev=30, azim=45)
# Solution 2: Add gridlines
ax.grid(True)
# Solution 3: Use color for depth
scatter = ax.scatter(x, y, z, c=z, cmap='viridis')
# Solution 4: Rotate interactively (if using interactive backend)
# User can click and drag to rotate
```
### Issue: 3D Axis Labels Cut Off
**Problem:** 3D axis labels appear outside figure
**Solution:**
```python
from mpl_toolkits.mplot3d import Axes3D
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
ax.plot_surface(X, Y, Z)
# Add padding
fig.tight_layout(pad=3.0)
# Or save with tight bounding box
plt.savefig('3d_plot.png', bbox_inches='tight', pad_inches=0.5)
```
## Image and Colorbar Issues
### Issue: Images Appear Flipped
**Problem:** Image orientation is wrong
**Solution:**
```python
# Set origin parameter
ax.imshow(img, origin='lower') # or 'upper' (default)
# Or flip array
ax.imshow(np.flipud(img))
```
### Issue: Images Look Pixelated
**Problem:** Image appears blocky when zoomed
**Solutions:**
```python
# Solution 1: Use interpolation
ax.imshow(img, interpolation='bilinear')
# Options: 'nearest', 'bilinear', 'bicubic', 'spline16', 'spline36', etc.
# Solution 2: Increase DPI when saving
plt.savefig('figure.png', dpi=300)
# Solution 3: Use vector format if appropriate
plt.savefig('figure.pdf')
```
## Common Errors and Fixes
### "TypeError: 'AxesSubplot' object is not subscriptable"
**Problem:** Trying to index single axes
```python
# Wrong
fig, ax = plt.subplots()
ax[0].plot(x, y) # Error!
# Correct
fig, ax = plt.subplots()
ax.plot(x, y)
```
### "ValueError: x and y must have same first dimension"
**Problem:** Data arrays have mismatched lengths
```python
# Check shapes
print(f"x shape: {x.shape}, y shape: {y.shape}")
# Ensure they match
assert len(x) == len(y), "x and y must have same length"
```
### "AttributeError: 'numpy.ndarray' object has no attribute 'plot'"
**Problem:** Calling plot on array instead of axes
```python
# Wrong
data.plot(x, y)
# Correct
ax.plot(x, y)
# or for pandas
data.plot(ax=ax)
```
## Best Practices to Avoid Issues
1. **Always use the OO interface** - Avoid pyplot state machine
```python
fig, ax = plt.subplots() # Good
ax.plot(x, y)
```
2. **Use constrained_layout** - Prevents overlap issues
```python
fig, ax = plt.subplots(constrained_layout=True)
```
3. **Close figures explicitly** - Prevents memory leaks
```python
plt.close(fig)
```
4. **Set figure size at creation** - Better than resizing later
```python
fig, ax = plt.subplots(figsize=(10, 6))
```
5. **Use raw strings for math text** - Avoids escape issues
```python
ax.set_xlabel(r'$\alpha$')
```
6. **Check data shapes before plotting** - Catch size mismatches early
```python
assert len(x) == len(y)
```
7. **Use appropriate DPI** - 300 for print, 150 for web
```python
plt.savefig('figure.png', dpi=300)
```
8. **Test with different backends** - If display issues occur
```python
import matplotlib
matplotlib.use('TkAgg')
```