Files
2025-11-30 08:30:10 +08:00

198 lines
5.1 KiB
Markdown

# scEmbed: Single-Cell Embedding Generation
## Overview
scEmbed trains Region2Vec models on single-cell ATAC-seq datasets to generate cell embeddings for clustering and analysis. It provides an unsupervised machine learning framework for representing and analyzing scATAC-seq data in low-dimensional space.
## When to Use
Use scEmbed when working with:
- Single-cell ATAC-seq (scATAC-seq) data requiring clustering
- Cell-type annotation tasks
- Dimensionality reduction for single-cell chromatin accessibility
- Integration with scanpy workflows for downstream analysis
## Workflow
### Step 1: Data Preparation
Input data must be in AnnData format with `.var` attributes containing `chr`, `start`, and `end` values for peaks.
**Starting from raw data** (barcodes.txt, peaks.bed, matrix.mtx):
```python
import scanpy as sc
import pandas as pd
import scipy.io
import anndata
# Load data
barcodes = pd.read_csv('barcodes.txt', header=None, names=['barcode'])
peaks = pd.read_csv('peaks.bed', sep='\t', header=None,
names=['chr', 'start', 'end'])
matrix = scipy.io.mmread('matrix.mtx').tocsr()
# Create AnnData
adata = anndata.AnnData(X=matrix.T, obs=barcodes, var=peaks)
adata.write('scatac_data.h5ad')
```
### Step 2: Pre-tokenization
Convert genomic regions into tokens using gtars utilities. This creates a parquet file with tokenized cells for faster training:
```python
from geniml.io import tokenize_cells
tokenize_cells(
adata='scatac_data.h5ad',
universe_file='universe.bed',
output='tokenized_cells.parquet'
)
```
**Benefits of pre-tokenization:**
- Faster training iterations
- Reduced memory requirements
- Reusable tokenized data for multiple training runs
### Step 3: Model Training
Train the scEmbed model using tokenized data:
```python
from geniml.scembed import ScEmbed
from geniml.region2vec import Region2VecDataset
# Load tokenized dataset
dataset = Region2VecDataset('tokenized_cells.parquet')
# Initialize and train model
model = ScEmbed(
embedding_dim=100,
window_size=5,
negative_samples=5
)
model.train(
dataset=dataset,
epochs=100,
batch_size=256,
learning_rate=0.025
)
# Save model
model.save('scembed_model/')
```
### Step 4: Generate Cell Embeddings
Use the trained model to generate embeddings for cells:
```python
from geniml.scembed import ScEmbed
# Load trained model
model = ScEmbed.from_pretrained('scembed_model/')
# Generate embeddings for AnnData object
embeddings = model.encode(adata)
# Add to AnnData for downstream analysis
adata.obsm['scembed_X'] = embeddings
```
### Step 5: Downstream Analysis
Integrate with scanpy for clustering and visualization:
```python
import scanpy as sc
# Use scEmbed embeddings for neighborhood graph
sc.pp.neighbors(adata, use_rep='scembed_X')
# Cluster cells
sc.tl.leiden(adata, resolution=0.5)
# Compute UMAP for visualization
sc.tl.umap(adata)
# Plot results
sc.pl.umap(adata, color='leiden')
```
## Key Parameters
### Training Parameters
| Parameter | Description | Typical Range |
|-----------|-------------|---------------|
| `embedding_dim` | Dimension of cell embeddings | 50 - 200 |
| `window_size` | Context window for training | 3 - 10 |
| `negative_samples` | Number of negative samples | 5 - 20 |
| `epochs` | Training epochs | 50 - 200 |
| `batch_size` | Training batch size | 128 - 512 |
| `learning_rate` | Initial learning rate | 0.01 - 0.05 |
### Tokenization Parameters
- **Universe file**: Reference BED file defining the genomic vocabulary
- **Overlap threshold**: Minimum overlap for peak-universe matching (typically 1e-9)
## Pre-trained Models
Pre-trained scEmbed models are available on Hugging Face for common reference datasets. Load them using:
```python
from geniml.scembed import ScEmbed
# Load pre-trained model
model = ScEmbed.from_pretrained('databio/scembed-pbmc-10k')
# Generate embeddings
embeddings = model.encode(adata)
```
## Best Practices
- **Data quality**: Use filtered peak-barcode matrices, not raw counts
- **Pre-tokenization**: Always pre-tokenize to improve training efficiency
- **Parameter tuning**: Adjust `embedding_dim` and training epochs based on dataset size
- **Validation**: Use known cell-type markers to validate clustering quality
- **Integration**: Combine with scanpy for comprehensive single-cell analysis
- **Model sharing**: Export trained models to Hugging Face for reproducibility
## Example Dataset
The 10x Genomics PBMC 10k dataset (10,000 peripheral blood mononuclear cells) serves as a standard benchmark:
- Contains diverse immune cell types
- Well-characterized cell populations
- Available from 10x Genomics website
## Cell-Type Annotation
After clustering, annotate cell types using k-nearest neighbors (KNN) with reference datasets:
```python
from geniml.scembed import annotate_celltypes
# Annotate using reference
annotations = annotate_celltypes(
query_adata=adata,
reference_adata=reference,
embedding_key='scembed_X',
k=10
)
adata.obs['cell_type'] = annotations
```
## Output
scEmbed produces:
- Low-dimensional cell embeddings (stored in `adata.obsm`)
- Trained model files for reuse
- Compatible format for scanpy downstream analysis
- Optional export to Hugging Face for sharing