Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

431
skills/networkx/SKILL.md Normal file
View File

@@ -0,0 +1,431 @@
---
name: networkx
description: Comprehensive toolkit for creating, analyzing, and visualizing complex networks and graphs in Python. Use when working with network/graph data structures, analyzing relationships between entities, computing graph algorithms (shortest paths, centrality, clustering), detecting communities, generating synthetic networks, or visualizing network topologies. Applicable to social networks, biological networks, transportation systems, citation networks, and any domain involving pairwise relationships.
---
# NetworkX
## Overview
NetworkX is a Python package for creating, manipulating, and analyzing complex networks and graphs. Use this skill when working with network or graph data structures, including social networks, biological networks, transportation systems, citation networks, knowledge graphs, or any system involving relationships between entities.
## When to Use This Skill
Invoke this skill when tasks involve:
- **Creating graphs**: Building network structures from data, adding nodes and edges with attributes
- **Graph analysis**: Computing centrality measures, finding shortest paths, detecting communities, measuring clustering
- **Graph algorithms**: Running standard algorithms like Dijkstra's, PageRank, minimum spanning trees, maximum flow
- **Network generation**: Creating synthetic networks (random, scale-free, small-world models) for testing or simulation
- **Graph I/O**: Reading from or writing to various formats (edge lists, GraphML, JSON, CSV, adjacency matrices)
- **Visualization**: Drawing and customizing network visualizations with matplotlib or interactive libraries
- **Network comparison**: Checking isomorphism, computing graph metrics, analyzing structural properties
## Core Capabilities
### 1. Graph Creation and Manipulation
NetworkX supports four main graph types:
- **Graph**: Undirected graphs with single edges
- **DiGraph**: Directed graphs with one-way connections
- **MultiGraph**: Undirected graphs allowing multiple edges between nodes
- **MultiDiGraph**: Directed graphs with multiple edges
Create graphs by:
```python
import networkx as nx
# Create empty graph
G = nx.Graph()
# Add nodes (can be any hashable type)
G.add_node(1)
G.add_nodes_from([2, 3, 4])
G.add_node("protein_A", type='enzyme', weight=1.5)
# Add edges
G.add_edge(1, 2)
G.add_edges_from([(1, 3), (2, 4)])
G.add_edge(1, 4, weight=0.8, relation='interacts')
```
**Reference**: See `references/graph-basics.md` for comprehensive guidance on creating, modifying, examining, and managing graph structures, including working with attributes and subgraphs.
### 2. Graph Algorithms
NetworkX provides extensive algorithms for network analysis:
**Shortest Paths**:
```python
# Find shortest path
path = nx.shortest_path(G, source=1, target=5)
length = nx.shortest_path_length(G, source=1, target=5, weight='weight')
```
**Centrality Measures**:
```python
# Degree centrality
degree_cent = nx.degree_centrality(G)
# Betweenness centrality
betweenness = nx.betweenness_centrality(G)
# PageRank
pagerank = nx.pagerank(G)
```
**Community Detection**:
```python
from networkx.algorithms import community
# Detect communities
communities = community.greedy_modularity_communities(G)
```
**Connectivity**:
```python
# Check connectivity
is_connected = nx.is_connected(G)
# Find connected components
components = list(nx.connected_components(G))
```
**Reference**: See `references/algorithms.md` for detailed documentation on all available algorithms including shortest paths, centrality measures, clustering, community detection, flows, matching, tree algorithms, and graph traversal.
### 3. Graph Generators
Create synthetic networks for testing, simulation, or modeling:
**Classic Graphs**:
```python
# Complete graph
G = nx.complete_graph(n=10)
# Cycle graph
G = nx.cycle_graph(n=20)
# Known graphs
G = nx.karate_club_graph()
G = nx.petersen_graph()
```
**Random Networks**:
```python
# Erdős-Rényi random graph
G = nx.erdos_renyi_graph(n=100, p=0.1, seed=42)
# Barabási-Albert scale-free network
G = nx.barabasi_albert_graph(n=100, m=3, seed=42)
# Watts-Strogatz small-world network
G = nx.watts_strogatz_graph(n=100, k=6, p=0.1, seed=42)
```
**Structured Networks**:
```python
# Grid graph
G = nx.grid_2d_graph(m=5, n=7)
# Random tree
G = nx.random_tree(n=100, seed=42)
```
**Reference**: See `references/generators.md` for comprehensive coverage of all graph generators including classic, random, lattice, bipartite, and specialized network models with detailed parameters and use cases.
### 4. Reading and Writing Graphs
NetworkX supports numerous file formats and data sources:
**File Formats**:
```python
# Edge list
G = nx.read_edgelist('graph.edgelist')
nx.write_edgelist(G, 'graph.edgelist')
# GraphML (preserves attributes)
G = nx.read_graphml('graph.graphml')
nx.write_graphml(G, 'graph.graphml')
# GML
G = nx.read_gml('graph.gml')
nx.write_gml(G, 'graph.gml')
# JSON
data = nx.node_link_data(G)
G = nx.node_link_graph(data)
```
**Pandas Integration**:
```python
import pandas as pd
# From DataFrame
df = pd.DataFrame({'source': [1, 2, 3], 'target': [2, 3, 4], 'weight': [0.5, 1.0, 0.75]})
G = nx.from_pandas_edgelist(df, 'source', 'target', edge_attr='weight')
# To DataFrame
df = nx.to_pandas_edgelist(G)
```
**Matrix Formats**:
```python
import numpy as np
# Adjacency matrix
A = nx.to_numpy_array(G)
G = nx.from_numpy_array(A)
# Sparse matrix
A = nx.to_scipy_sparse_array(G)
G = nx.from_scipy_sparse_array(A)
```
**Reference**: See `references/io.md` for complete documentation on all I/O formats including CSV, SQL databases, Cytoscape, DOT, and guidance on format selection for different use cases.
### 5. Visualization
Create clear and informative network visualizations:
**Basic Visualization**:
```python
import matplotlib.pyplot as plt
# Simple draw
nx.draw(G, with_labels=True)
plt.show()
# With layout
pos = nx.spring_layout(G, seed=42)
nx.draw(G, pos=pos, with_labels=True, node_color='lightblue', node_size=500)
plt.show()
```
**Customization**:
```python
# Color by degree
node_colors = [G.degree(n) for n in G.nodes()]
nx.draw(G, node_color=node_colors, cmap=plt.cm.viridis)
# Size by centrality
centrality = nx.betweenness_centrality(G)
node_sizes = [3000 * centrality[n] for n in G.nodes()]
nx.draw(G, node_size=node_sizes)
# Edge weights
edge_widths = [3 * G[u][v].get('weight', 1) for u, v in G.edges()]
nx.draw(G, width=edge_widths)
```
**Layout Algorithms**:
```python
# Spring layout (force-directed)
pos = nx.spring_layout(G, seed=42)
# Circular layout
pos = nx.circular_layout(G)
# Kamada-Kawai layout
pos = nx.kamada_kawai_layout(G)
# Spectral layout
pos = nx.spectral_layout(G)
```
**Publication Quality**:
```python
plt.figure(figsize=(12, 8))
pos = nx.spring_layout(G, seed=42)
nx.draw(G, pos=pos, node_color='lightblue', node_size=500,
edge_color='gray', with_labels=True, font_size=10)
plt.title('Network Visualization', fontsize=16)
plt.axis('off')
plt.tight_layout()
plt.savefig('network.png', dpi=300, bbox_inches='tight')
plt.savefig('network.pdf', bbox_inches='tight') # Vector format
```
**Reference**: See `references/visualization.md` for extensive documentation on visualization techniques including layout algorithms, customization options, interactive visualizations with Plotly and PyVis, 3D networks, and publication-quality figure creation.
## Working with NetworkX
### Installation
Ensure NetworkX is installed:
```python
# Check if installed
import networkx as nx
print(nx.__version__)
# Install if needed (via bash)
# uv pip install networkx
# uv pip install networkx[default] # With optional dependencies
```
### Common Workflow Pattern
Most NetworkX tasks follow this pattern:
1. **Create or Load Graph**:
```python
# From scratch
G = nx.Graph()
G.add_edges_from([(1, 2), (2, 3), (3, 4)])
# Or load from file/data
G = nx.read_edgelist('data.txt')
```
2. **Examine Structure**:
```python
print(f"Nodes: {G.number_of_nodes()}")
print(f"Edges: {G.number_of_edges()}")
print(f"Density: {nx.density(G)}")
print(f"Connected: {nx.is_connected(G)}")
```
3. **Analyze**:
```python
# Compute metrics
degree_cent = nx.degree_centrality(G)
avg_clustering = nx.average_clustering(G)
# Find paths
path = nx.shortest_path(G, source=1, target=4)
# Detect communities
communities = community.greedy_modularity_communities(G)
```
4. **Visualize**:
```python
pos = nx.spring_layout(G, seed=42)
nx.draw(G, pos=pos, with_labels=True)
plt.show()
```
5. **Export Results**:
```python
# Save graph
nx.write_graphml(G, 'analyzed_network.graphml')
# Save metrics
df = pd.DataFrame({
'node': list(degree_cent.keys()),
'centrality': list(degree_cent.values())
})
df.to_csv('centrality_results.csv', index=False)
```
### Important Considerations
**Floating Point Precision**: When graphs contain floating-point numbers, all results are inherently approximate due to precision limitations. This can affect algorithm outcomes, particularly in minimum/maximum computations.
**Memory and Performance**: Each time a script runs, graph data must be loaded into memory. For large networks:
- Use appropriate data structures (sparse matrices for large sparse graphs)
- Consider loading only necessary subgraphs
- Use efficient file formats (pickle for Python objects, compressed formats)
- Leverage approximate algorithms for very large networks (e.g., `k` parameter in centrality calculations)
**Node and Edge Types**:
- Nodes can be any hashable Python object (numbers, strings, tuples, custom objects)
- Use meaningful identifiers for clarity
- When removing nodes, all incident edges are automatically removed
**Random Seeds**: Always set random seeds for reproducibility in random graph generation and force-directed layouts:
```python
G = nx.erdos_renyi_graph(n=100, p=0.1, seed=42)
pos = nx.spring_layout(G, seed=42)
```
## Quick Reference
### Basic Operations
```python
# Create
G = nx.Graph()
G.add_edge(1, 2)
# Query
G.number_of_nodes()
G.number_of_edges()
G.degree(1)
list(G.neighbors(1))
# Check
G.has_node(1)
G.has_edge(1, 2)
nx.is_connected(G)
# Modify
G.remove_node(1)
G.remove_edge(1, 2)
G.clear()
```
### Essential Algorithms
```python
# Paths
nx.shortest_path(G, source, target)
nx.all_pairs_shortest_path(G)
# Centrality
nx.degree_centrality(G)
nx.betweenness_centrality(G)
nx.closeness_centrality(G)
nx.pagerank(G)
# Clustering
nx.clustering(G)
nx.average_clustering(G)
# Components
nx.connected_components(G)
nx.strongly_connected_components(G) # Directed
# Community
community.greedy_modularity_communities(G)
```
### File I/O Quick Reference
```python
# Read
nx.read_edgelist('file.txt')
nx.read_graphml('file.graphml')
nx.read_gml('file.gml')
# Write
nx.write_edgelist(G, 'file.txt')
nx.write_graphml(G, 'file.graphml')
nx.write_gml(G, 'file.gml')
# Pandas
nx.from_pandas_edgelist(df, 'source', 'target')
nx.to_pandas_edgelist(G)
```
## Resources
This skill includes comprehensive reference documentation:
### references/graph-basics.md
Detailed guide on graph types, creating and modifying graphs, adding nodes and edges, managing attributes, examining structure, and working with subgraphs.
### references/algorithms.md
Complete coverage of NetworkX algorithms including shortest paths, centrality measures, connectivity, clustering, community detection, flow algorithms, tree algorithms, matching, coloring, isomorphism, and graph traversal.
### references/generators.md
Comprehensive documentation on graph generators including classic graphs, random models (Erdős-Rényi, Barabási-Albert, Watts-Strogatz), lattices, trees, social network models, and specialized generators.
### references/io.md
Complete guide to reading and writing graphs in various formats: edge lists, adjacency lists, GraphML, GML, JSON, CSV, Pandas DataFrames, NumPy arrays, SciPy sparse matrices, database integration, and format selection guidelines.
### references/visualization.md
Extensive documentation on visualization techniques including layout algorithms, customizing node and edge appearance, labels, interactive visualizations with Plotly and PyVis, 3D networks, bipartite layouts, and creating publication-quality figures.
## Additional Resources
- **Official Documentation**: https://networkx.org/documentation/latest/
- **Tutorial**: https://networkx.org/documentation/latest/tutorial.html
- **Gallery**: https://networkx.org/documentation/latest/auto_examples/index.html
- **GitHub**: https://github.com/networkx/networkx

View File

@@ -0,0 +1,383 @@
# NetworkX Graph Algorithms
## Shortest Paths
### Single Source Shortest Paths
```python
# Dijkstra's algorithm (weighted graphs)
path = nx.shortest_path(G, source=1, target=5, weight='weight')
length = nx.shortest_path_length(G, source=1, target=5, weight='weight')
# All shortest paths from source
paths = nx.single_source_shortest_path(G, source=1)
lengths = nx.single_source_shortest_path_length(G, source=1)
# Bellman-Ford (handles negative weights)
path = nx.bellman_ford_path(G, source=1, target=5, weight='weight')
```
### All Pairs Shortest Paths
```python
# All pairs (returns iterator)
for source, paths in nx.all_pairs_shortest_path(G):
print(f"From {source}: {paths}")
# Floyd-Warshall algorithm
lengths = dict(nx.all_pairs_shortest_path_length(G))
```
### Specialized Shortest Path Algorithms
```python
# A* algorithm (with heuristic)
def heuristic(u, v):
# Custom heuristic function
return abs(u - v)
path = nx.astar_path(G, source=1, target=5, heuristic=heuristic, weight='weight')
# Average shortest path length
avg_length = nx.average_shortest_path_length(G)
```
## Connectivity
### Connected Components (Undirected)
```python
# Check if connected
is_connected = nx.is_connected(G)
# Number of components
num_components = nx.number_connected_components(G)
# Get all components (returns iterator of sets)
components = list(nx.connected_components(G))
largest_component = max(components, key=len)
# Get component containing specific node
component = nx.node_connected_component(G, node=1)
```
### Strong/Weak Connectivity (Directed)
```python
# Strong connectivity (mutually reachable)
is_strongly_connected = nx.is_strongly_connected(G)
strong_components = list(nx.strongly_connected_components(G))
largest_scc = max(strong_components, key=len)
# Weak connectivity (ignoring direction)
is_weakly_connected = nx.is_weakly_connected(G)
weak_components = list(nx.weakly_connected_components(G))
# Condensation (DAG of strongly connected components)
condensed = nx.condensation(G)
```
### Cuts and Connectivity
```python
# Minimum node/edge cut
min_node_cut = nx.minimum_node_cut(G, s=1, t=5)
min_edge_cut = nx.minimum_edge_cut(G, s=1, t=5)
# Node/edge connectivity
node_connectivity = nx.node_connectivity(G)
edge_connectivity = nx.edge_connectivity(G)
```
## Centrality Measures
### Degree Centrality
```python
# Fraction of nodes each node is connected to
degree_cent = nx.degree_centrality(G)
# For directed graphs
in_degree_cent = nx.in_degree_centrality(G)
out_degree_cent = nx.out_degree_centrality(G)
```
### Betweenness Centrality
```python
# Fraction of shortest paths passing through node
betweenness = nx.betweenness_centrality(G, weight='weight')
# Edge betweenness
edge_betweenness = nx.edge_betweenness_centrality(G, weight='weight')
# Approximate for large graphs
approx_betweenness = nx.betweenness_centrality(G, k=100) # Sample 100 nodes
```
### Closeness Centrality
```python
# Reciprocal of average shortest path length
closeness = nx.closeness_centrality(G)
# For disconnected graphs
closeness = nx.closeness_centrality(G, wf_improved=True)
```
### Eigenvector Centrality
```python
# Centrality based on connections to high-centrality nodes
eigenvector = nx.eigenvector_centrality(G, max_iter=1000)
# Katz centrality (variant with attenuation factor)
katz = nx.katz_centrality(G, alpha=0.1, beta=1.0)
```
### PageRank
```python
# Google's PageRank algorithm
pagerank = nx.pagerank(G, alpha=0.85)
# Personalized PageRank
personalization = {node: 1.0 if node in [1, 2] else 0.0 for node in G}
ppr = nx.pagerank(G, personalization=personalization)
```
## Clustering
### Clustering Coefficients
```python
# Clustering coefficient for each node
clustering = nx.clustering(G)
# Average clustering coefficient
avg_clustering = nx.average_clustering(G)
# Weighted clustering
weighted_clustering = nx.clustering(G, weight='weight')
```
### Transitivity
```python
# Overall clustering (ratio of triangles to triads)
transitivity = nx.transitivity(G)
```
### Triangles
```python
# Count triangles per node
triangles = nx.triangles(G)
# Total number of triangles
total_triangles = sum(triangles.values()) // 3
```
## Community Detection
### Modularity-Based
```python
from networkx.algorithms import community
# Greedy modularity maximization
communities = community.greedy_modularity_communities(G)
# Compute modularity
modularity = community.modularity(G, communities)
```
### Label Propagation
```python
# Fast community detection
communities = community.label_propagation_communities(G)
```
### Girvan-Newman
```python
# Hierarchical community detection via edge betweenness
comp = community.girvan_newman(G)
limited = itertools.takewhile(lambda c: len(c) <= 10, comp)
for communities in limited:
print(tuple(sorted(c) for c in communities))
```
## Matching and Covering
### Maximum Matching
```python
# Maximum cardinality matching
matching = nx.max_weight_matching(G)
# Check if matching is valid
is_matching = nx.is_matching(G, matching)
is_perfect = nx.is_perfect_matching(G, matching)
```
### Minimum Vertex/Edge Cover
```python
# Minimum set of nodes covering all edges
min_vertex_cover = nx.approximation.min_weighted_vertex_cover(G)
# Minimum edge dominating set
min_edge_dom = nx.approximation.min_edge_dominating_set(G)
```
## Tree Algorithms
### Minimum Spanning Tree
```python
# Kruskal's or Prim's algorithm
mst = nx.minimum_spanning_tree(G, weight='weight')
# Maximum spanning tree
mst_max = nx.maximum_spanning_tree(G, weight='weight')
# Enumerate all spanning trees
all_spanning = nx.all_spanning_trees(G)
```
### Tree Properties
```python
# Check if graph is tree
is_tree = nx.is_tree(G)
is_forest = nx.is_forest(G)
# For directed graphs
is_arborescence = nx.is_arborescence(G)
```
## Flow and Capacity
### Maximum Flow
```python
# Maximum flow value
flow_value = nx.maximum_flow_value(G, s=1, t=5, capacity='capacity')
# Maximum flow with flow dict
flow_value, flow_dict = nx.maximum_flow(G, s=1, t=5, capacity='capacity')
# Minimum cut
cut_value, partition = nx.minimum_cut(G, s=1, t=5, capacity='capacity')
```
### Cost Flow
```python
# Minimum cost flow
flow_dict = nx.min_cost_flow(G, demand='demand', capacity='capacity', weight='weight')
cost = nx.cost_of_flow(G, flow_dict, weight='weight')
```
## Cycles
### Finding Cycles
```python
# Simple cycles (for directed graphs)
cycles = list(nx.simple_cycles(G))
# Cycle basis (for undirected graphs)
basis = nx.cycle_basis(G)
# Check if acyclic
is_dag = nx.is_directed_acyclic_graph(G)
```
### Topological Sorting
```python
# Only for DAGs
try:
topo_order = list(nx.topological_sort(G))
except nx.NetworkXError:
print("Graph has cycles")
# All topological sorts
all_topo = nx.all_topological_sorts(G)
```
## Cliques
### Finding Cliques
```python
# All maximal cliques
cliques = list(nx.find_cliques(G))
# Maximum clique (NP-complete, approximate)
max_clique = nx.approximation.max_clique(G)
# Clique number
clique_number = nx.graph_clique_number(G)
# Number of maximal cliques containing each node
clique_counts = nx.node_clique_number(G)
```
## Graph Coloring
### Node Coloring
```python
# Greedy coloring
coloring = nx.greedy_color(G, strategy='largest_first')
# Different strategies: 'largest_first', 'smallest_last', 'random_sequential'
coloring = nx.greedy_color(G, strategy='smallest_last')
```
## Isomorphism
### Graph Isomorphism
```python
# Check if graphs are isomorphic
is_isomorphic = nx.is_isomorphic(G1, G2)
# Get isomorphism mapping
from networkx.algorithms import isomorphism
GM = isomorphism.GraphMatcher(G1, G2)
if GM.is_isomorphic():
mapping = GM.mapping
```
### Subgraph Isomorphism
```python
# Check if G1 is subgraph isomorphic to G2
is_subgraph_iso = nx.is_isomorphic(G1, G2.subgraph(nodes))
```
## Traversal Algorithms
### Depth-First Search (DFS)
```python
# DFS edges
dfs_edges = list(nx.dfs_edges(G, source=1))
# DFS tree
dfs_tree = nx.dfs_tree(G, source=1)
# DFS predecessors
dfs_pred = nx.dfs_predecessors(G, source=1)
# Preorder and postorder
preorder = list(nx.dfs_preorder_nodes(G, source=1))
postorder = list(nx.dfs_postorder_nodes(G, source=1))
```
### Breadth-First Search (BFS)
```python
# BFS edges
bfs_edges = list(nx.bfs_edges(G, source=1))
# BFS tree
bfs_tree = nx.bfs_tree(G, source=1)
# BFS predecessors and successors
bfs_pred = nx.bfs_predecessors(G, source=1)
bfs_succ = nx.bfs_successors(G, source=1)
```
## Efficiency Considerations
### Algorithm Complexity
- Many algorithms have parameters to control computation time
- For large graphs, consider approximate algorithms
- Use `k` parameter to sample nodes in centrality calculations
- Set `max_iter` for iterative algorithms
### Memory Usage
- Iterator-based functions (e.g., `nx.simple_cycles()`) save memory
- Convert to list only when necessary
- Use generators for large result sets
### Numerical Precision
When using weighted algorithms with floating-point numbers, results are approximate. Consider:
- Using integer weights when possible
- Setting appropriate tolerance parameters
- Being aware of accumulated rounding errors in iterative algorithms

View File

@@ -0,0 +1,378 @@
# NetworkX Graph Generators
## Classic Graphs
### Complete Graphs
```python
# Complete graph (all nodes connected to all others)
G = nx.complete_graph(n=10)
# Complete bipartite graph
G = nx.complete_bipartite_graph(n1=5, n2=7)
# Complete multipartite graph
G = nx.complete_multipartite_graph(3, 4, 5) # Three partitions
```
### Cycle and Path Graphs
```python
# Cycle graph (nodes arranged in circle)
G = nx.cycle_graph(n=20)
# Path graph (linear chain)
G = nx.path_graph(n=15)
# Circular ladder graph
G = nx.circular_ladder_graph(n=10)
```
### Regular Graphs
```python
# Empty graph (no edges)
G = nx.empty_graph(n=10)
# Null graph (no nodes)
G = nx.null_graph()
# Star graph (one central node connected to all others)
G = nx.star_graph(n=19) # Creates 20-node star
# Wheel graph (cycle with central hub)
G = nx.wheel_graph(n=10)
```
### Special Named Graphs
```python
# Bull graph
G = nx.bull_graph()
# Chvatal graph
G = nx.chvatal_graph()
# Cubical graph
G = nx.cubical_graph()
# Diamond graph
G = nx.diamond_graph()
# Dodecahedral graph
G = nx.dodecahedral_graph()
# Heawood graph
G = nx.heawood_graph()
# House graph
G = nx.house_graph()
# Petersen graph
G = nx.petersen_graph()
# Karate club graph (classic social network)
G = nx.karate_club_graph()
```
## Random Graphs
### Erdős-Rényi Graphs
```python
# G(n, p) model: n nodes, edge probability p
G = nx.erdos_renyi_graph(n=100, p=0.1, seed=42)
# G(n, m) model: n nodes, exactly m edges
G = nx.gnm_random_graph(n=100, m=500, seed=42)
# Fast version (for large sparse graphs)
G = nx.fast_gnp_random_graph(n=10000, p=0.0001, seed=42)
```
### Watts-Strogatz Small-World
```python
# Small-world network with rewiring
# n nodes, k nearest neighbors, rewiring probability p
G = nx.watts_strogatz_graph(n=100, k=6, p=0.1, seed=42)
# Connected version (guarantees connectivity)
G = nx.connected_watts_strogatz_graph(n=100, k=6, p=0.1, tries=100, seed=42)
```
### Barabási-Albert Preferential Attachment
```python
# Scale-free network (power-law degree distribution)
# n nodes, m edges to attach from new node
G = nx.barabasi_albert_graph(n=100, m=3, seed=42)
# Extended version with parameters
G = nx.extended_barabasi_albert_graph(n=100, m=3, p=0.5, q=0.2, seed=42)
```
### Power Law Degree Sequence
```python
# Power law cluster graph
G = nx.powerlaw_cluster_graph(n=100, m=3, p=0.1, seed=42)
# Random power law tree
G = nx.random_powerlaw_tree(n=100, gamma=3, seed=42, tries=1000)
```
### Configuration Model
```python
# Graph with specified degree sequence
degree_sequence = [3, 3, 3, 3, 2, 2, 2, 1, 1, 1]
G = nx.configuration_model(degree_sequence, seed=42)
# Remove self-loops and parallel edges
G = nx.Graph(G)
G.remove_edges_from(nx.selfloop_edges(G))
```
### Random Geometric Graphs
```python
# Nodes in unit square, edges if distance < radius
G = nx.random_geometric_graph(n=100, radius=0.2, seed=42)
# With positions
pos = nx.get_node_attributes(G, 'pos')
```
### Random Regular Graphs
```python
# Every node has exactly d neighbors
G = nx.random_regular_graph(d=3, n=100, seed=42)
```
### Stochastic Block Model
```python
# Community structure model
sizes = [50, 50, 50] # Three communities
probs = [[0.25, 0.05, 0.02], # Within and between community probabilities
[0.05, 0.35, 0.07],
[0.02, 0.07, 0.40]]
G = nx.stochastic_block_model(sizes, probs, seed=42)
```
## Lattice and Grid Graphs
### Grid Graphs
```python
# 2D grid
G = nx.grid_2d_graph(m=5, n=7) # 5x7 grid
# 3D grid
G = nx.grid_graph(dim=[5, 7, 3]) # 5x7x3 grid
# Hexagonal lattice
G = nx.hexagonal_lattice_graph(m=5, n=7)
# Triangular lattice
G = nx.triangular_lattice_graph(m=5, n=7)
```
### Hypercube
```python
# n-dimensional hypercube
G = nx.hypercube_graph(n=4)
```
## Tree Graphs
### Random Trees
```python
# Random tree with n nodes
G = nx.random_tree(n=100, seed=42)
# Prefix tree (tries)
G = nx.prefix_tree([[0, 1, 2], [0, 1, 3], [0, 4]])
```
### Balanced Trees
```python
# Balanced r-ary tree of height h
G = nx.balanced_tree(r=2, h=5) # Binary tree, height 5
# Full r-ary tree with n nodes
G = nx.full_rary_tree(r=3, n=100) # Ternary tree
```
### Barbell and Lollipop Graphs
```python
# Two complete graphs connected by path
G = nx.barbell_graph(m1=5, m2=3) # Two K_5 graphs with 3-node path
# Complete graph connected to path
G = nx.lollipop_graph(m=7, n=5) # K_7 with 5-node path
```
## Social Network Models
### Karate Club
```python
# Zachary's karate club (classic social network)
G = nx.karate_club_graph()
```
### Davis Southern Women
```python
# Bipartite social network
G = nx.davis_southern_women_graph()
```
### Florentine Families
```python
# Historical marriage and business networks
G = nx.florentine_families_graph()
```
### Les Misérables
```python
# Character co-occurrence network
G = nx.les_miserables_graph()
```
## Directed Graph Generators
### Random Directed Graphs
```python
# Directed Erdős-Rényi
G = nx.gnp_random_graph(n=100, p=0.1, directed=True, seed=42)
# Scale-free directed
G = nx.scale_free_graph(n=100, seed=42)
```
### DAG (Directed Acyclic Graph)
```python
# Random DAG
G = nx.gnp_random_graph(n=20, p=0.2, directed=True, seed=42)
G = nx.DiGraph([(u, v) for (u, v) in G.edges() if u < v]) # Remove backward edges
```
### Tournament Graphs
```python
# Random tournament (complete directed graph)
G = nx.random_tournament(n=10, seed=42)
```
## Duplication-Divergence Models
### Duplication Divergence Graph
```python
# Biological network model (protein interaction networks)
G = nx.duplication_divergence_graph(n=100, p=0.5, seed=42)
```
## Degree Sequence Generators
### Valid Degree Sequences
```python
# Check if degree sequence is valid (graphical)
sequence = [3, 3, 3, 3, 2, 2, 2, 1, 1, 1]
is_valid = nx.is_graphical(sequence)
# For directed graphs
in_sequence = [2, 2, 2, 1, 1]
out_sequence = [2, 2, 1, 2, 1]
is_valid = nx.is_digraphical(in_sequence, out_sequence)
```
### Creating from Degree Sequence
```python
# Havel-Hakimi algorithm
G = nx.havel_hakimi_graph(degree_sequence)
# Configuration model (allows multi-edges/self-loops)
G = nx.configuration_model(degree_sequence)
# Directed configuration model
G = nx.directed_configuration_model(in_degree_sequence, out_degree_sequence)
```
## Bipartite Graphs
### Random Bipartite
```python
# Random bipartite with two node sets
G = nx.bipartite.random_graph(n=50, m=30, p=0.1, seed=42)
# Configuration model for bipartite
G = nx.bipartite.configuration_model(deg1=[3, 3, 2], deg2=[2, 2, 2, 2], seed=42)
```
### Bipartite Generators
```python
# Complete bipartite
G = nx.complete_bipartite_graph(n1=5, n2=7)
# Gnmk random bipartite (n, m nodes, k edges)
G = nx.bipartite.gnmk_random_graph(n=10, m=8, k=20, seed=42)
```
## Operators on Graphs
### Graph Operations
```python
# Union
G = nx.union(G1, G2)
# Disjoint union
G = nx.disjoint_union(G1, G2)
# Compose (overlay)
G = nx.compose(G1, G2)
# Complement
G = nx.complement(G1)
# Cartesian product
G = nx.cartesian_product(G1, G2)
# Tensor (Kronecker) product
G = nx.tensor_product(G1, G2)
# Strong product
G = nx.strong_product(G1, G2)
```
## Customization and Seeding
### Setting Random Seed
Always set seed for reproducible graphs:
```python
G = nx.erdos_renyi_graph(n=100, p=0.1, seed=42)
```
### Converting Graph Types
```python
# Convert to specific type
G_directed = G.to_directed()
G_undirected = G.to_undirected()
G_multi = nx.MultiGraph(G)
```
## Performance Considerations
### Fast Generators
For large graphs, use optimized generators:
```python
# Fast ER graph (sparse)
G = nx.fast_gnp_random_graph(n=10000, p=0.0001, seed=42)
```
### Memory Efficiency
Some generators create graphs incrementally to save memory. For very large graphs, consider:
- Using sparse representations
- Generating subgraphs as needed
- Working with adjacency lists or edge lists instead of full graphs
## Validation and Properties
### Checking Generated Graphs
```python
# Verify properties
print(f"Nodes: {G.number_of_nodes()}")
print(f"Edges: {G.number_of_edges()}")
print(f"Density: {nx.density(G)}")
print(f"Connected: {nx.is_connected(G)}")
# Degree distribution
degree_sequence = sorted([d for n, d in G.degree()], reverse=True)
```

View File

@@ -0,0 +1,283 @@
# NetworkX Graph Basics
## Graph Types
NetworkX supports four main graph classes:
### Graph (Undirected)
```python
import networkx as nx
G = nx.Graph()
```
- Undirected graphs with single edges between nodes
- No parallel edges allowed
- Edges are bidirectional
### DiGraph (Directed)
```python
G = nx.DiGraph()
```
- Directed graphs with one-way connections
- Edge direction matters: (u, v) ≠ (v, u)
- Used for modeling directed relationships
### MultiGraph (Undirected Multi-edge)
```python
G = nx.MultiGraph()
```
- Allows multiple edges between same node pairs
- Useful for modeling multiple relationships
### MultiDiGraph (Directed Multi-edge)
```python
G = nx.MultiDiGraph()
```
- Directed graph with multiple edges between nodes
- Combines features of DiGraph and MultiGraph
## Creating and Adding Nodes
### Single Node Addition
```python
G.add_node(1)
G.add_node("protein_A")
G.add_node((x, y)) # Nodes can be any hashable type
```
### Bulk Node Addition
```python
G.add_nodes_from([2, 3, 4])
G.add_nodes_from(range(100, 110))
```
### Nodes with Attributes
```python
G.add_node(1, time='5pm', color='red')
G.add_nodes_from([
(4, {"color": "red"}),
(5, {"color": "blue", "weight": 1.5})
])
```
### Important Node Properties
- Nodes can be any hashable Python object: strings, tuples, numbers, custom objects
- Node attributes stored as key-value pairs
- Use meaningful node identifiers for clarity
## Creating and Adding Edges
### Single Edge Addition
```python
G.add_edge(1, 2)
G.add_edge('gene_A', 'gene_B')
```
### Bulk Edge Addition
```python
G.add_edges_from([(1, 2), (1, 3), (2, 4)])
G.add_edges_from(edge_list)
```
### Edges with Attributes
```python
G.add_edge(1, 2, weight=4.7, relation='interacts')
G.add_edges_from([
(1, 2, {'weight': 4.7}),
(2, 3, {'weight': 8.2, 'color': 'blue'})
])
```
### Adding from Edge List with Attributes
```python
# From pandas DataFrame
import pandas as pd
df = pd.DataFrame({'source': [1, 2], 'target': [2, 3], 'weight': [4.7, 8.2]})
G = nx.from_pandas_edgelist(df, 'source', 'target', edge_attr='weight')
```
## Examining Graph Structure
### Basic Properties
```python
# Get collections
G.nodes # NodeView of all nodes
G.edges # EdgeView of all edges
G.adj # AdjacencyView for neighbor relationships
# Count elements
G.number_of_nodes() # Total node count
G.number_of_edges() # Total edge count
len(G) # Number of nodes (shorthand)
# Degree information
G.degree() # DegreeView of all node degrees
G.degree(1) # Degree of specific node
list(G.degree()) # List of (node, degree) pairs
```
### Checking Existence
```python
# Check if node exists
1 in G # Returns True/False
G.has_node(1)
# Check if edge exists
G.has_edge(1, 2)
```
### Accessing Neighbors
```python
# Get neighbors of node 1
list(G.neighbors(1))
list(G[1]) # Dictionary-like access
# For directed graphs
list(G.predecessors(1)) # Incoming edges
list(G.successors(1)) # Outgoing edges
```
### Iterating Over Elements
```python
# Iterate over nodes
for node in G.nodes:
print(node, G.nodes[node]) # Access node attributes
# Iterate over edges
for u, v in G.edges:
print(u, v, G[u][v]) # Access edge attributes
# Iterate with attributes
for node, attrs in G.nodes(data=True):
print(node, attrs)
for u, v, attrs in G.edges(data=True):
print(u, v, attrs)
```
## Modifying Graphs
### Removing Elements
```python
# Remove single node (also removes incident edges)
G.remove_node(1)
# Remove multiple nodes
G.remove_nodes_from([1, 2, 3])
# Remove edges
G.remove_edge(1, 2)
G.remove_edges_from([(1, 2), (2, 3)])
```
### Clearing Graph
```python
G.clear() # Remove all nodes and edges
G.clear_edges() # Remove only edges, keep nodes
```
## Attributes and Metadata
### Graph-Level Attributes
```python
G.graph['name'] = 'Social Network'
G.graph['date'] = '2025-01-15'
print(G.graph)
```
### Node Attributes
```python
# Set at creation
G.add_node(1, time='5pm', weight=0.5)
# Set after creation
G.nodes[1]['time'] = '6pm'
nx.set_node_attributes(G, {1: 'red', 2: 'blue'}, 'color')
# Get attributes
G.nodes[1]
G.nodes[1]['time']
nx.get_node_attributes(G, 'color')
```
### Edge Attributes
```python
# Set at creation
G.add_edge(1, 2, weight=4.7, color='red')
# Set after creation
G[1][2]['weight'] = 5.0
nx.set_edge_attributes(G, {(1, 2): 10.5}, 'weight')
# Get attributes
G[1][2]
G[1][2]['weight']
G.edges[1, 2]
nx.get_edge_attributes(G, 'weight')
```
## Subgraphs and Views
### Subgraph Creation
```python
# Create subgraph from node list
nodes_subset = [1, 2, 3, 4]
H = G.subgraph(nodes_subset) # Returns view (references original)
# Create independent copy
H = G.subgraph(nodes_subset).copy()
# Edge-induced subgraph
edge_subset = [(1, 2), (2, 3)]
H = G.edge_subgraph(edge_subset)
```
### Graph Views
```python
# Reverse view (for directed graphs)
G_reversed = G.reverse()
# Convert between directed/undirected
G_undirected = G.to_undirected()
G_directed = G.to_directed()
```
## Graph Information and Diagnostics
### Basic Information
```python
print(nx.info(G)) # Summary of graph structure
# Density (ratio of actual edges to possible edges)
nx.density(G)
# Check if graph is directed
G.is_directed()
# Check if graph is multigraph
G.is_multigraph()
```
### Connectivity Checks
```python
# For undirected graphs
nx.is_connected(G)
nx.number_connected_components(G)
# For directed graphs
nx.is_strongly_connected(G)
nx.is_weakly_connected(G)
```
## Important Considerations
### Floating Point Precision
Once graphs contain floating point numbers, all results are inherently approximate due to precision limitations. Small arithmetic errors can affect algorithm outcomes, particularly in minimum/maximum computations.
### Memory Considerations
Each time a script starts, graph data must be loaded into memory. For large datasets, this can cause performance issues. Consider:
- Using efficient data formats (pickle for Python objects)
- Loading only necessary subgraphs
- Using graph databases for very large networks
### Node and Edge Removal Behavior
When a node is removed, all edges incident with that node are automatically removed as well.

View File

@@ -0,0 +1,441 @@
# NetworkX Input/Output
## Reading Graphs from Files
### Adjacency List Format
```python
# Read adjacency list (simple text format)
G = nx.read_adjlist('graph.adjlist')
# With node type conversion
G = nx.read_adjlist('graph.adjlist', nodetype=int)
# For directed graphs
G = nx.read_adjlist('graph.adjlist', create_using=nx.DiGraph())
# Write adjacency list
nx.write_adjlist(G, 'graph.adjlist')
```
Example adjacency list format:
```
# node neighbors
0 1 2
1 0 3 4
2 0 3
3 1 2 4
4 1 3
```
### Edge List Format
```python
# Read edge list
G = nx.read_edgelist('graph.edgelist')
# With node types and edge data
G = nx.read_edgelist('graph.edgelist',
nodetype=int,
data=(('weight', float),))
# Read weighted edge list
G = nx.read_weighted_edgelist('weighted.edgelist')
# Write edge list
nx.write_edgelist(G, 'graph.edgelist')
# Write weighted edge list
nx.write_weighted_edgelist(G, 'weighted.edgelist')
```
Example edge list format:
```
# source target
0 1
1 2
2 3
3 0
```
Example weighted edge list:
```
# source target weight
0 1 0.5
1 2 1.0
2 3 0.75
```
### GML (Graph Modelling Language)
```python
# Read GML (preserves all attributes)
G = nx.read_gml('graph.gml')
# Write GML
nx.write_gml(G, 'graph.gml')
```
### GraphML Format
```python
# Read GraphML (XML-based format)
G = nx.read_graphml('graph.graphml')
# Write GraphML
nx.write_graphml(G, 'graph.graphml')
# With specific encoding
nx.write_graphml(G, 'graph.graphml', encoding='utf-8')
```
### GEXF (Graph Exchange XML Format)
```python
# Read GEXF
G = nx.read_gexf('graph.gexf')
# Write GEXF
nx.write_gexf(G, 'graph.gexf')
```
### Pajek Format
```python
# Read Pajek .net files
G = nx.read_pajek('graph.net')
# Write Pajek format
nx.write_pajek(G, 'graph.net')
```
### LEDA Format
```python
# Read LEDA format
G = nx.read_leda('graph.leda')
# Write LEDA format
nx.write_leda(G, 'graph.leda')
```
## Working with Pandas
### From Pandas DataFrame
```python
import pandas as pd
# Create graph from edge list DataFrame
df = pd.DataFrame({
'source': [1, 2, 3, 4],
'target': [2, 3, 4, 1],
'weight': [0.5, 1.0, 0.75, 0.25]
})
# Create graph
G = nx.from_pandas_edgelist(df,
source='source',
target='target',
edge_attr='weight')
# With multiple edge attributes
G = nx.from_pandas_edgelist(df,
source='source',
target='target',
edge_attr=['weight', 'color', 'type'])
# Create directed graph
G = nx.from_pandas_edgelist(df,
source='source',
target='target',
create_using=nx.DiGraph())
```
### To Pandas DataFrame
```python
# Convert graph to edge list DataFrame
df = nx.to_pandas_edgelist(G)
# With specific edge attributes
df = nx.to_pandas_edgelist(G, source='node1', target='node2')
```
### Adjacency Matrix with Pandas
```python
# Create DataFrame from adjacency matrix
df = nx.to_pandas_adjacency(G, dtype=int)
# Create graph from adjacency DataFrame
G = nx.from_pandas_adjacency(df)
# For directed graphs
G = nx.from_pandas_adjacency(df, create_using=nx.DiGraph())
```
## NumPy and SciPy Integration
### Adjacency Matrix
```python
import numpy as np
# To NumPy adjacency matrix
A = nx.to_numpy_array(G, dtype=int)
# With specific node order
nodelist = [1, 2, 3, 4, 5]
A = nx.to_numpy_array(G, nodelist=nodelist)
# From NumPy array
G = nx.from_numpy_array(A)
# For directed graphs
G = nx.from_numpy_array(A, create_using=nx.DiGraph())
```
### Sparse Matrix (SciPy)
```python
from scipy import sparse
# To sparse matrix
A = nx.to_scipy_sparse_array(G)
# With specific format (csr, csc, coo, etc.)
A_csr = nx.to_scipy_sparse_array(G, format='csr')
# From sparse matrix
G = nx.from_scipy_sparse_array(A)
```
## JSON Format
### Node-Link Format
```python
import json
# To node-link format (good for d3.js)
data = nx.node_link_data(G)
with open('graph.json', 'w') as f:
json.dump(data, f)
# From node-link format
with open('graph.json', 'r') as f:
data = json.load(f)
G = nx.node_link_graph(data)
```
### Adjacency Data Format
```python
# To adjacency format
data = nx.adjacency_data(G)
with open('graph.json', 'w') as f:
json.dump(data, f)
# From adjacency format
with open('graph.json', 'r') as f:
data = json.load(f)
G = nx.adjacency_graph(data)
```
### Tree Data Format
```python
# For tree graphs
data = nx.tree_data(G, root=0)
with open('tree.json', 'w') as f:
json.dump(data, f)
# From tree format
with open('tree.json', 'r') as f:
data = json.load(f)
G = nx.tree_graph(data)
```
## Pickle Format
### Binary Pickle
```python
import pickle
# Write pickle (preserves all Python objects)
with open('graph.pkl', 'wb') as f:
pickle.dump(G, f)
# Read pickle
with open('graph.pkl', 'rb') as f:
G = pickle.load(f)
# NetworkX convenience functions
nx.write_gpickle(G, 'graph.gpickle')
G = nx.read_gpickle('graph.gpickle')
```
## CSV Files
### Custom CSV Reading
```python
import csv
# Read edges from CSV
G = nx.Graph()
with open('edges.csv', 'r') as f:
reader = csv.DictReader(f)
for row in reader:
G.add_edge(row['source'], row['target'], weight=float(row['weight']))
# Write edges to CSV
with open('edges.csv', 'w', newline='') as f:
writer = csv.writer(f)
writer.writerow(['source', 'target', 'weight'])
for u, v, data in G.edges(data=True):
writer.writerow([u, v, data.get('weight', 1.0)])
```
## Database Integration
### SQL Databases
```python
import sqlite3
import pandas as pd
# Read from SQL database via pandas
conn = sqlite3.connect('network.db')
df = pd.read_sql_query("SELECT source, target, weight FROM edges", conn)
G = nx.from_pandas_edgelist(df, 'source', 'target', edge_attr='weight')
conn.close()
# Write to SQL database
df = nx.to_pandas_edgelist(G)
conn = sqlite3.connect('network.db')
df.to_sql('edges', conn, if_exists='replace', index=False)
conn.close()
```
## Graph Formats for Visualization
### DOT Format (Graphviz)
```python
# Write DOT file for Graphviz
nx.drawing.nx_pydot.write_dot(G, 'graph.dot')
# Read DOT file
G = nx.drawing.nx_pydot.read_dot('graph.dot')
# Generate directly to image (requires Graphviz)
from networkx.drawing.nx_pydot import to_pydot
pydot_graph = to_pydot(G)
pydot_graph.write_png('graph.png')
```
## Cytoscape Integration
### Cytoscape JSON
```python
# Export for Cytoscape
data = nx.cytoscape_data(G)
with open('cytoscape.json', 'w') as f:
json.dump(data, f)
# Import from Cytoscape
with open('cytoscape.json', 'r') as f:
data = json.load(f)
G = nx.cytoscape_graph(data)
```
## Specialized Formats
### Matrix Market Format
```python
from scipy.io import mmread, mmwrite
# Read Matrix Market
A = mmread('graph.mtx')
G = nx.from_scipy_sparse_array(A)
# Write Matrix Market
A = nx.to_scipy_sparse_array(G)
mmwrite('graph.mtx', A)
```
### Shapefile (for Geographic Networks)
```python
# Requires pyshp library
# Read geographic network from shapefile
G = nx.read_shp('roads.shp')
# Write to shapefile
nx.write_shp(G, 'network')
```
## Format Selection Guidelines
### Choose Based on Requirements
**Adjacency List** - Simple, human-readable, no attributes
- Best for: Simple unweighted graphs, quick viewing
**Edge List** - Simple, supports weights, human-readable
- Best for: Weighted graphs, importing/exporting data
**GML/GraphML** - Full attribute preservation, XML-based
- Best for: Complete graph serialization with all metadata
**JSON** - Web-friendly, JavaScript integration
- Best for: Web applications, d3.js visualizations
**Pickle** - Fast, preserves Python objects, binary
- Best for: Python-only storage, complex attributes
**Pandas** - Data analysis integration, DataFrame operations
- Best for: Data processing pipelines, statistical analysis
**NumPy/SciPy** - Numerical computation, sparse matrices
- Best for: Matrix operations, scientific computing
**DOT** - Visualization, Graphviz integration
- Best for: Creating visual diagrams
## Performance Considerations
### Large Graphs
For large graphs, consider:
```python
# Use compressed formats
import gzip
with gzip.open('graph.adjlist.gz', 'wt') as f:
nx.write_adjlist(G, f)
with gzip.open('graph.adjlist.gz', 'rt') as f:
G = nx.read_adjlist(f)
# Use binary formats (faster)
nx.write_gpickle(G, 'graph.gpickle') # Faster than text formats
# Use sparse matrices for adjacency
A = nx.to_scipy_sparse_array(G, format='csr') # Memory efficient
```
### Incremental Loading
For very large graphs:
```python
# Load graph incrementally from edge list
G = nx.Graph()
with open('huge_graph.edgelist') as f:
for line in f:
u, v = line.strip().split()
G.add_edge(u, v)
# Process in chunks
if G.number_of_edges() % 100000 == 0:
print(f"Loaded {G.number_of_edges()} edges")
```
## Error Handling
### Robust File Reading
```python
try:
G = nx.read_graphml('graph.graphml')
except nx.NetworkXError as e:
print(f"Error reading GraphML: {e}")
except FileNotFoundError:
print("File not found")
G = nx.Graph()
# Check if file format is supported
if os.path.exists('graph.txt'):
with open('graph.txt') as f:
first_line = f.readline()
# Detect format and read accordingly
```

View File

@@ -0,0 +1,529 @@
# NetworkX Graph Visualization
## Basic Drawing with Matplotlib
### Simple Visualization
```python
import networkx as nx
import matplotlib.pyplot as plt
# Create and draw graph
G = nx.karate_club_graph()
nx.draw(G)
plt.show()
# Save to file
nx.draw(G)
plt.savefig('graph.png', dpi=300, bbox_inches='tight')
plt.close()
```
### Drawing with Labels
```python
# Draw with node labels
nx.draw(G, with_labels=True)
plt.show()
# Custom labels
labels = {i: f"Node {i}" for i in G.nodes()}
nx.draw(G, labels=labels, with_labels=True)
plt.show()
```
## Layout Algorithms
### Spring Layout (Force-Directed)
```python
# Fruchterman-Reingold force-directed algorithm
pos = nx.spring_layout(G, seed=42)
nx.draw(G, pos=pos, with_labels=True)
plt.show()
# With parameters
pos = nx.spring_layout(G, k=0.5, iterations=50, seed=42)
```
### Circular Layout
```python
# Arrange nodes in circle
pos = nx.circular_layout(G)
nx.draw(G, pos=pos, with_labels=True)
plt.show()
```
### Random Layout
```python
# Random positioning
pos = nx.random_layout(G, seed=42)
nx.draw(G, pos=pos, with_labels=True)
plt.show()
```
### Shell Layout
```python
# Concentric circles
pos = nx.shell_layout(G)
nx.draw(G, pos=pos, with_labels=True)
plt.show()
# With custom shells
shells = [[0, 1, 2], [3, 4, 5, 6], [7, 8, 9]]
pos = nx.shell_layout(G, nlist=shells)
```
### Spectral Layout
```python
# Use eigenvectors of graph Laplacian
pos = nx.spectral_layout(G)
nx.draw(G, pos=pos, with_labels=True)
plt.show()
```
### Kamada-Kawai Layout
```python
# Energy-based layout
pos = nx.kamada_kawai_layout(G)
nx.draw(G, pos=pos, with_labels=True)
plt.show()
```
### Planar Layout
```python
# For planar graphs only
if nx.is_planar(G):
pos = nx.planar_layout(G)
nx.draw(G, pos=pos, with_labels=True)
plt.show()
```
### Tree Layouts
```python
# For tree graphs
if nx.is_tree(G):
pos = nx.nx_agraph.graphviz_layout(G, prog='dot')
nx.draw(G, pos=pos, with_labels=True)
plt.show()
```
## Customizing Node Appearance
### Node Colors
```python
# Single color
nx.draw(G, node_color='red')
# Different colors per node
node_colors = ['red' if G.degree(n) > 5 else 'blue' for n in G.nodes()]
nx.draw(G, node_color=node_colors)
# Color by attribute
colors = [G.nodes[n].get('value', 0) for n in G.nodes()]
nx.draw(G, node_color=colors, cmap=plt.cm.viridis)
plt.colorbar()
plt.show()
```
### Node Sizes
```python
# Size by degree
node_sizes = [100 * G.degree(n) for n in G.nodes()]
nx.draw(G, node_size=node_sizes)
# Size by centrality
centrality = nx.degree_centrality(G)
node_sizes = [3000 * centrality[n] for n in G.nodes()]
nx.draw(G, node_size=node_sizes)
```
### Node Shapes
```python
# Draw nodes separately with different shapes
pos = nx.spring_layout(G)
# Circle nodes
nx.draw_networkx_nodes(G, pos, nodelist=[0, 1, 2],
node_shape='o', node_color='red')
# Square nodes
nx.draw_networkx_nodes(G, pos, nodelist=[3, 4, 5],
node_shape='s', node_color='blue')
nx.draw_networkx_edges(G, pos)
nx.draw_networkx_labels(G, pos)
plt.show()
```
### Node Borders
```python
nx.draw(G, pos=pos,
node_color='lightblue',
edgecolors='black', # Node border color
linewidths=2) # Node border width
plt.show()
```
## Customizing Edge Appearance
### Edge Colors
```python
# Single color
nx.draw(G, edge_color='gray')
# Different colors per edge
edge_colors = ['red' if G[u][v].get('weight', 1) > 0.5 else 'blue'
for u, v in G.edges()]
nx.draw(G, edge_color=edge_colors)
# Color by weight
edges = G.edges()
weights = [G[u][v].get('weight', 1) for u, v in edges]
nx.draw(G, edge_color=weights, edge_cmap=plt.cm.Reds)
```
### Edge Widths
```python
# Width by weight
edge_widths = [3 * G[u][v].get('weight', 1) for u, v in G.edges()]
nx.draw(G, width=edge_widths)
# Width by betweenness
edge_betweenness = nx.edge_betweenness_centrality(G)
edge_widths = [5 * edge_betweenness[(u, v)] for u, v in G.edges()]
nx.draw(G, width=edge_widths)
```
### Edge Styles
```python
# Dashed edges
nx.draw(G, style='dashed')
# Different styles per edge
pos = nx.spring_layout(G)
strong_edges = [(u, v) for u, v in G.edges() if G[u][v].get('weight', 0) > 0.5]
weak_edges = [(u, v) for u, v in G.edges() if G[u][v].get('weight', 0) <= 0.5]
nx.draw_networkx_nodes(G, pos)
nx.draw_networkx_edges(G, pos, edgelist=strong_edges, style='solid', width=2)
nx.draw_networkx_edges(G, pos, edgelist=weak_edges, style='dashed', width=1)
plt.show()
```
### Directed Graphs (Arrows)
```python
# Draw directed graph with arrows
G_directed = nx.DiGraph([(1, 2), (2, 3), (3, 1)])
pos = nx.spring_layout(G_directed)
nx.draw(G_directed, pos=pos, with_labels=True,
arrows=True,
arrowsize=20,
arrowstyle='->',
connectionstyle='arc3,rad=0.1')
plt.show()
```
## Labels and Annotations
### Node Labels
```python
pos = nx.spring_layout(G)
# Custom labels
labels = {n: f"N{n}" for n in G.nodes()}
nx.draw_networkx_labels(G, pos, labels=labels, font_size=12, font_color='white')
# Font customization
nx.draw_networkx_labels(G, pos,
font_size=10,
font_family='serif',
font_weight='bold')
```
### Edge Labels
```python
pos = nx.spring_layout(G)
nx.draw_networkx_nodes(G, pos)
nx.draw_networkx_edges(G, pos)
# Edge labels from attributes
edge_labels = nx.get_edge_attributes(G, 'weight')
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels)
plt.show()
# Custom edge labels
edge_labels = {(u, v): f"{u}-{v}" for u, v in G.edges()}
nx.draw_networkx_edge_labels(G, pos, edge_labels=edge_labels)
```
## Advanced Drawing Techniques
### Combining Draw Functions
```python
# Full control by separating components
pos = nx.spring_layout(G, seed=42)
# Draw edges
nx.draw_networkx_edges(G, pos, alpha=0.3, width=1)
# Draw nodes
nx.draw_networkx_nodes(G, pos,
node_color='lightblue',
node_size=500,
edgecolors='black')
# Draw labels
nx.draw_networkx_labels(G, pos, font_size=10)
# Remove axis
plt.axis('off')
plt.tight_layout()
plt.show()
```
### Subgraph Highlighting
```python
pos = nx.spring_layout(G)
# Identify subgraph to highlight
subgraph_nodes = [1, 2, 3, 4]
subgraph = G.subgraph(subgraph_nodes)
# Draw main graph
nx.draw_networkx_nodes(G, pos, node_color='lightgray', node_size=300)
nx.draw_networkx_edges(G, pos, alpha=0.2)
# Highlight subgraph
nx.draw_networkx_nodes(subgraph, pos, node_color='red', node_size=500)
nx.draw_networkx_edges(subgraph, pos, edge_color='red', width=2)
nx.draw_networkx_labels(G, pos)
plt.axis('off')
plt.show()
```
### Community Coloring
```python
from networkx.algorithms import community
# Detect communities
communities = community.greedy_modularity_communities(G)
# Assign colors
color_map = {}
colors = ['red', 'blue', 'green', 'yellow', 'purple', 'orange']
for i, comm in enumerate(communities):
for node in comm:
color_map[node] = colors[i % len(colors)]
node_colors = [color_map[n] for n in G.nodes()]
pos = nx.spring_layout(G)
nx.draw(G, pos=pos, node_color=node_colors, with_labels=True)
plt.show()
```
## Creating Publication-Quality Figures
### High Resolution Export
```python
plt.figure(figsize=(12, 8))
pos = nx.spring_layout(G, seed=42)
nx.draw(G, pos=pos,
node_color='lightblue',
node_size=500,
edge_color='gray',
width=1,
with_labels=True,
font_size=10)
plt.title('Graph Visualization', fontsize=16)
plt.axis('off')
plt.tight_layout()
plt.savefig('publication_graph.png', dpi=300, bbox_inches='tight')
plt.savefig('publication_graph.pdf', bbox_inches='tight') # Vector format
plt.close()
```
### Multi-Panel Figures
```python
fig, axes = plt.subplots(1, 3, figsize=(18, 6))
# Different layouts
layouts = [nx.circular_layout(G), nx.spring_layout(G), nx.spectral_layout(G)]
titles = ['Circular', 'Spring', 'Spectral']
for ax, pos, title in zip(axes, layouts, titles):
nx.draw(G, pos=pos, ax=ax, with_labels=True, node_color='lightblue')
ax.set_title(title)
ax.axis('off')
plt.tight_layout()
plt.savefig('layouts_comparison.png', dpi=300)
plt.close()
```
## Interactive Visualization Libraries
### Plotly (Interactive)
```python
import plotly.graph_objects as go
# Create positions
pos = nx.spring_layout(G)
# Edge trace
edge_x = []
edge_y = []
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_trace = go.Scatter(
x=edge_x, y=edge_y,
line=dict(width=0.5, color='#888'),
hoverinfo='none',
mode='lines')
# Node trace
node_x = [pos[node][0] for node in G.nodes()]
node_y = [pos[node][1] for node in G.nodes()]
node_trace = go.Scatter(
x=node_x, y=node_y,
mode='markers',
hoverinfo='text',
marker=dict(
showscale=True,
colorscale='YlGnBu',
size=10,
colorbar=dict(thickness=15, title='Node Connections'),
line_width=2))
# Color by degree
node_adjacencies = [len(list(G.neighbors(node))) for node in G.nodes()]
node_trace.marker.color = node_adjacencies
fig = go.Figure(data=[edge_trace, node_trace],
layout=go.Layout(
showlegend=False,
hovermode='closest',
margin=dict(b=0, l=0, r=0, t=0)))
fig.show()
```
### PyVis (Interactive HTML)
```python
from pyvis.network import Network
# Create network
net = Network(notebook=True, height='750px', width='100%')
# Add nodes and edges from NetworkX
net.from_nx(G)
# Customize
net.show_buttons(filter_=['physics'])
# Save
net.show('graph.html')
```
### Graphviz (via pydot)
```python
# Requires graphviz and pydot
from networkx.drawing.nx_pydot import graphviz_layout
pos = graphviz_layout(G, prog='neato') # neato, dot, fdp, sfdp, circo, twopi
nx.draw(G, pos=pos, with_labels=True)
plt.show()
# Export to graphviz
nx.drawing.nx_pydot.write_dot(G, 'graph.dot')
```
## Bipartite Graph Visualization
### Two-Set Layout
```python
from networkx.algorithms import bipartite
# Create bipartite graph
B = nx.Graph()
B.add_nodes_from([1, 2, 3, 4], bipartite=0)
B.add_nodes_from(['a', 'b', 'c', 'd', 'e'], bipartite=1)
B.add_edges_from([(1, 'a'), (1, 'b'), (2, 'b'), (2, 'c'), (3, 'd'), (4, 'e')])
# Layout with two columns
pos = {}
top_nodes = [n for n, d in B.nodes(data=True) if d['bipartite'] == 0]
bottom_nodes = [n for n, d in B.nodes(data=True) if d['bipartite'] == 1]
pos.update({node: (0, i) for i, node in enumerate(top_nodes)})
pos.update({node: (1, i) for i, node in enumerate(bottom_nodes)})
nx.draw(B, pos=pos, with_labels=True,
node_color=['lightblue' if B.nodes[n]['bipartite'] == 0 else 'lightgreen'
for n in B.nodes()])
plt.show()
```
## 3D Visualization
### 3D Network Plot
```python
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
# 3D spring layout
pos = nx.spring_layout(G, dim=3, seed=42)
# Extract coordinates
node_xyz = np.array([pos[v] for v in G.nodes()])
edge_xyz = np.array([(pos[u], pos[v]) for u, v in G.edges()])
# Create figure
fig = plt.figure(figsize=(10, 8))
ax = fig.add_subplot(111, projection='3d')
# Plot edges
for vizedge in edge_xyz:
ax.plot(*vizedge.T, color='gray', alpha=0.5)
# Plot nodes
ax.scatter(*node_xyz.T, s=100, c='lightblue', edgecolors='black')
# Labels
for i, (x, y, z) in enumerate(node_xyz):
ax.text(x, y, z, str(i))
ax.set_axis_off()
plt.show()
```
## Best Practices
### Performance
- For large graphs (>1000 nodes), use simpler layouts (circular, random)
- Use `alpha` parameter to make dense edges more visible
- Consider downsampling or showing subgraphs for very large networks
### Aesthetics
- Use consistent color schemes
- Scale node sizes meaningfully (e.g., by degree or importance)
- Keep labels readable (adjust font size and position)
- Use white space effectively (adjust figure size)
### Reproducibility
- Always set random seeds for layouts: `nx.spring_layout(G, seed=42)`
- Save layout positions for consistency across multiple plots
- Document color/size mappings in legends or captions
### File Formats
- PNG for raster images (web, presentations)
- PDF for vector graphics (publications, scalable)
- SVG for web and interactive applications
- HTML for interactive visualizations