9.0 KiB
9.0 KiB
NetworkX Graph Algorithms
Shortest Paths
Single Source Shortest Paths
# Dijkstra's algorithm (weighted graphs)
path = nx.shortest_path(G, source=1, target=5, weight='weight')
length = nx.shortest_path_length(G, source=1, target=5, weight='weight')
# All shortest paths from source
paths = nx.single_source_shortest_path(G, source=1)
lengths = nx.single_source_shortest_path_length(G, source=1)
# Bellman-Ford (handles negative weights)
path = nx.bellman_ford_path(G, source=1, target=5, weight='weight')
All Pairs Shortest Paths
# All pairs (returns iterator)
for source, paths in nx.all_pairs_shortest_path(G):
print(f"From {source}: {paths}")
# Floyd-Warshall algorithm
lengths = dict(nx.all_pairs_shortest_path_length(G))
Specialized Shortest Path Algorithms
# A* algorithm (with heuristic)
def heuristic(u, v):
# Custom heuristic function
return abs(u - v)
path = nx.astar_path(G, source=1, target=5, heuristic=heuristic, weight='weight')
# Average shortest path length
avg_length = nx.average_shortest_path_length(G)
Connectivity
Connected Components (Undirected)
# Check if connected
is_connected = nx.is_connected(G)
# Number of components
num_components = nx.number_connected_components(G)
# Get all components (returns iterator of sets)
components = list(nx.connected_components(G))
largest_component = max(components, key=len)
# Get component containing specific node
component = nx.node_connected_component(G, node=1)
Strong/Weak Connectivity (Directed)
# Strong connectivity (mutually reachable)
is_strongly_connected = nx.is_strongly_connected(G)
strong_components = list(nx.strongly_connected_components(G))
largest_scc = max(strong_components, key=len)
# Weak connectivity (ignoring direction)
is_weakly_connected = nx.is_weakly_connected(G)
weak_components = list(nx.weakly_connected_components(G))
# Condensation (DAG of strongly connected components)
condensed = nx.condensation(G)
Cuts and Connectivity
# Minimum node/edge cut
min_node_cut = nx.minimum_node_cut(G, s=1, t=5)
min_edge_cut = nx.minimum_edge_cut(G, s=1, t=5)
# Node/edge connectivity
node_connectivity = nx.node_connectivity(G)
edge_connectivity = nx.edge_connectivity(G)
Centrality Measures
Degree Centrality
# Fraction of nodes each node is connected to
degree_cent = nx.degree_centrality(G)
# For directed graphs
in_degree_cent = nx.in_degree_centrality(G)
out_degree_cent = nx.out_degree_centrality(G)
Betweenness Centrality
# Fraction of shortest paths passing through node
betweenness = nx.betweenness_centrality(G, weight='weight')
# Edge betweenness
edge_betweenness = nx.edge_betweenness_centrality(G, weight='weight')
# Approximate for large graphs
approx_betweenness = nx.betweenness_centrality(G, k=100) # Sample 100 nodes
Closeness Centrality
# Reciprocal of average shortest path length
closeness = nx.closeness_centrality(G)
# For disconnected graphs
closeness = nx.closeness_centrality(G, wf_improved=True)
Eigenvector Centrality
# Centrality based on connections to high-centrality nodes
eigenvector = nx.eigenvector_centrality(G, max_iter=1000)
# Katz centrality (variant with attenuation factor)
katz = nx.katz_centrality(G, alpha=0.1, beta=1.0)
PageRank
# Google's PageRank algorithm
pagerank = nx.pagerank(G, alpha=0.85)
# Personalized PageRank
personalization = {node: 1.0 if node in [1, 2] else 0.0 for node in G}
ppr = nx.pagerank(G, personalization=personalization)
Clustering
Clustering Coefficients
# Clustering coefficient for each node
clustering = nx.clustering(G)
# Average clustering coefficient
avg_clustering = nx.average_clustering(G)
# Weighted clustering
weighted_clustering = nx.clustering(G, weight='weight')
Transitivity
# Overall clustering (ratio of triangles to triads)
transitivity = nx.transitivity(G)
Triangles
# Count triangles per node
triangles = nx.triangles(G)
# Total number of triangles
total_triangles = sum(triangles.values()) // 3
Community Detection
Modularity-Based
from networkx.algorithms import community
# Greedy modularity maximization
communities = community.greedy_modularity_communities(G)
# Compute modularity
modularity = community.modularity(G, communities)
Label Propagation
# Fast community detection
communities = community.label_propagation_communities(G)
Girvan-Newman
# Hierarchical community detection via edge betweenness
comp = community.girvan_newman(G)
limited = itertools.takewhile(lambda c: len(c) <= 10, comp)
for communities in limited:
print(tuple(sorted(c) for c in communities))
Matching and Covering
Maximum Matching
# Maximum cardinality matching
matching = nx.max_weight_matching(G)
# Check if matching is valid
is_matching = nx.is_matching(G, matching)
is_perfect = nx.is_perfect_matching(G, matching)
Minimum Vertex/Edge Cover
# Minimum set of nodes covering all edges
min_vertex_cover = nx.approximation.min_weighted_vertex_cover(G)
# Minimum edge dominating set
min_edge_dom = nx.approximation.min_edge_dominating_set(G)
Tree Algorithms
Minimum Spanning Tree
# Kruskal's or Prim's algorithm
mst = nx.minimum_spanning_tree(G, weight='weight')
# Maximum spanning tree
mst_max = nx.maximum_spanning_tree(G, weight='weight')
# Enumerate all spanning trees
all_spanning = nx.all_spanning_trees(G)
Tree Properties
# Check if graph is tree
is_tree = nx.is_tree(G)
is_forest = nx.is_forest(G)
# For directed graphs
is_arborescence = nx.is_arborescence(G)
Flow and Capacity
Maximum Flow
# Maximum flow value
flow_value = nx.maximum_flow_value(G, s=1, t=5, capacity='capacity')
# Maximum flow with flow dict
flow_value, flow_dict = nx.maximum_flow(G, s=1, t=5, capacity='capacity')
# Minimum cut
cut_value, partition = nx.minimum_cut(G, s=1, t=5, capacity='capacity')
Cost Flow
# Minimum cost flow
flow_dict = nx.min_cost_flow(G, demand='demand', capacity='capacity', weight='weight')
cost = nx.cost_of_flow(G, flow_dict, weight='weight')
Cycles
Finding Cycles
# Simple cycles (for directed graphs)
cycles = list(nx.simple_cycles(G))
# Cycle basis (for undirected graphs)
basis = nx.cycle_basis(G)
# Check if acyclic
is_dag = nx.is_directed_acyclic_graph(G)
Topological Sorting
# Only for DAGs
try:
topo_order = list(nx.topological_sort(G))
except nx.NetworkXError:
print("Graph has cycles")
# All topological sorts
all_topo = nx.all_topological_sorts(G)
Cliques
Finding Cliques
# All maximal cliques
cliques = list(nx.find_cliques(G))
# Maximum clique (NP-complete, approximate)
max_clique = nx.approximation.max_clique(G)
# Clique number
clique_number = nx.graph_clique_number(G)
# Number of maximal cliques containing each node
clique_counts = nx.node_clique_number(G)
Graph Coloring
Node Coloring
# Greedy coloring
coloring = nx.greedy_color(G, strategy='largest_first')
# Different strategies: 'largest_first', 'smallest_last', 'random_sequential'
coloring = nx.greedy_color(G, strategy='smallest_last')
Isomorphism
Graph Isomorphism
# Check if graphs are isomorphic
is_isomorphic = nx.is_isomorphic(G1, G2)
# Get isomorphism mapping
from networkx.algorithms import isomorphism
GM = isomorphism.GraphMatcher(G1, G2)
if GM.is_isomorphic():
mapping = GM.mapping
Subgraph Isomorphism
# Check if G1 is subgraph isomorphic to G2
is_subgraph_iso = nx.is_isomorphic(G1, G2.subgraph(nodes))
Traversal Algorithms
Depth-First Search (DFS)
# DFS edges
dfs_edges = list(nx.dfs_edges(G, source=1))
# DFS tree
dfs_tree = nx.dfs_tree(G, source=1)
# DFS predecessors
dfs_pred = nx.dfs_predecessors(G, source=1)
# Preorder and postorder
preorder = list(nx.dfs_preorder_nodes(G, source=1))
postorder = list(nx.dfs_postorder_nodes(G, source=1))
Breadth-First Search (BFS)
# BFS edges
bfs_edges = list(nx.bfs_edges(G, source=1))
# BFS tree
bfs_tree = nx.bfs_tree(G, source=1)
# BFS predecessors and successors
bfs_pred = nx.bfs_predecessors(G, source=1)
bfs_succ = nx.bfs_successors(G, source=1)
Efficiency Considerations
Algorithm Complexity
- Many algorithms have parameters to control computation time
- For large graphs, consider approximate algorithms
- Use
kparameter to sample nodes in centrality calculations - Set
max_iterfor iterative algorithms
Memory Usage
- Iterator-based functions (e.g.,
nx.simple_cycles()) save memory - Convert to list only when necessary
- Use generators for large result sets
Numerical Precision
When using weighted algorithms with floating-point numbers, results are approximate. Consider:
- Using integer weights when possible
- Setting appropriate tolerance parameters
- Being aware of accumulated rounding errors in iterative algorithms