Initial commit

This commit is contained in:
Zhongwei Li
2025-11-30 08:30:10 +08:00
commit f0bd18fb4e
824 changed files with 331919 additions and 0 deletions

View File

@@ -0,0 +1,182 @@
# DiffDock Confidence Scores and Limitations
This document provides detailed guidance on interpreting DiffDock confidence scores and understanding the tool's limitations.
## Confidence Score Interpretation
DiffDock generates a confidence score for each predicted binding pose. This score indicates the model's certainty about the prediction.
### Score Ranges
| Score Range | Confidence Level | Interpretation |
|------------|------------------|----------------|
| **> 0** | High confidence | Strong prediction, likely accurate binding pose |
| **-1.5 to 0** | Moderate confidence | Reasonable prediction, may need validation |
| **< -1.5** | Low confidence | Uncertain prediction, requires careful validation |
### Important Notes on Confidence Scores
1. **Not Binding Affinity**: Confidence scores reflect prediction certainty, NOT binding affinity strength
- High confidence = model is confident about the structure
- Does NOT indicate strong/weak binding affinity
2. **Context-Dependent**: Confidence scores should be adjusted based on system complexity:
- **Lower expectations** for:
- Large ligands (>500 Da)
- Protein complexes with many chains
- Unbound protein conformations (may require conformational changes)
- Novel protein families not well-represented in training data
- **Higher expectations** for:
- Drug-like small molecules (150-500 Da)
- Single-chain proteins or well-defined binding sites
- Proteins similar to those in training data (PDBBind, BindingMOAD)
3. **Multiple Predictions**: DiffDock generates multiple samples per complex (default: 10)
- Review top-ranked predictions (by confidence)
- Consider clustering similar poses
- High-confidence consensus across multiple samples strengthens prediction
## What DiffDock Predicts
### ✅ DiffDock DOES Predict
- **Binding poses**: 3D spatial orientation of ligand in protein binding site
- **Confidence scores**: Model's certainty about predictions
- **Multiple conformations**: Various possible binding modes
### ❌ DiffDock DOES NOT Predict
- **Binding affinity**: Strength of protein-ligand interaction (ΔG, Kd, Ki)
- **Binding kinetics**: On/off rates, residence time
- **ADMET properties**: Absorption, distribution, metabolism, excretion, toxicity
- **Selectivity**: Relative binding to different targets
## Scope and Limitations
### Designed For
- **Small molecule docking**: Organic compounds typically 100-1000 Da
- **Protein targets**: Single or multi-chain proteins
- **Small peptides**: Short peptide ligands (< ~20 residues)
- **Small nucleic acids**: Short oligonucleotides
### NOT Designed For
- **Large biomolecules**: Full protein-protein interactions
- Use DiffDock-PP, AlphaFold-Multimer, or RoseTTAFold2NA instead
- **Large peptides/proteins**: >20 residues as ligands
- **Covalent docking**: Irreversible covalent bond formation
- **Metalloprotein specifics**: May not accurately handle metal coordination
- **Membrane proteins**: Not specifically trained on membrane-embedded proteins
### Training Data Considerations
DiffDock was trained on:
- **PDBBind**: Diverse protein-ligand complexes
- **BindingMOAD**: Multi-domain protein structures
**Implications**:
- Best performance on proteins/ligands similar to training data
- May underperform on:
- Novel protein families
- Unusual ligand chemotypes
- Allosteric sites not well-represented in training data
## Validation and Complementary Tools
### Recommended Workflow
1. **Generate poses with DiffDock**
- Use confidence scores for initial ranking
- Consider multiple high-confidence predictions
2. **Visual Inspection**
- Examine protein-ligand interactions in molecular viewer
- Check for reasonable:
- Hydrogen bonds
- Hydrophobic interactions
- Steric complementarity
- Electrostatic interactions
3. **Scoring and Refinement** (choose one or more):
- **GNINA**: Deep learning-based scoring function
- **Molecular mechanics**: Energy minimization and refinement
- **MM/GBSA or MM/PBSA**: Binding free energy estimation
- **Free energy calculations**: FEP or TI for accurate affinity prediction
4. **Experimental Validation**
- Biochemical assays (IC50, Kd measurements)
- Structural validation (X-ray crystallography, cryo-EM)
### Tools for Binding Affinity Assessment
DiffDock should be combined with these tools for affinity prediction:
- **GNINA**: Fast, accurate scoring function
- Github: github.com/gnina/gnina
- **AutoDock Vina**: Classical docking and scoring
- Website: vina.scripps.edu
- **Free Energy Calculations**:
- OpenMM + OpenFE
- GROMACS + ABFE/RBFE protocols
- **MM/GBSA Tools**:
- MMPBSA.py (AmberTools)
- gmx_MMPBSA
## Performance Optimization
### For Best Results
1. **Protein Preparation**:
- Remove water molecules far from binding site
- Resolve missing residues if possible
- Consider protonation states at physiological pH
2. **Ligand Input**:
- Provide reasonable 3D conformers when using structure files
- Use canonical SMILES for consistent results
- Pre-process with RDKit if needed
3. **Computational Resources**:
- GPU strongly recommended (10-100x speedup)
- First run pre-computes lookup tables (takes a few minutes)
- Batch processing more efficient than single predictions
4. **Parameter Tuning**:
- Increase `samples_per_complex` for difficult cases (20-40)
- Adjust temperature parameters for diversity/accuracy trade-off
- Use pre-computed ESM embeddings for repeated predictions
## Common Issues and Troubleshooting
### Low Confidence Scores
- **Large/flexible ligands**: Consider splitting into fragments or use alternative methods
- **Multiple binding sites**: May predict multiple locations with distributed confidence
- **Protein flexibility**: Consider using ensemble of protein conformations
### Unrealistic Predictions
- **Clashes**: May indicate need for protein preparation or refinement
- **Surface binding**: Check if true binding site is blocked or unclear
- **Unusual poses**: Consider increasing samples to explore more conformations
### Slow Performance
- **Use GPU**: Essential for reasonable runtime
- **Pre-compute embeddings**: Reuse ESM embeddings for same protein
- **Batch processing**: More efficient than sequential individual predictions
- **Reduce samples**: Lower `samples_per_complex` for quick screening
## Citation and Further Reading
For methodology details and benchmarking results, see:
1. **Original DiffDock Paper** (ICLR 2023):
- "DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking"
- Corso et al., arXiv:2210.01776
2. **DiffDock-L Paper** (2024):
- Enhanced model with improved generalization
- Stärk et al., arXiv:2402.18396
3. **PoseBusters Benchmark**:
- Rigorous docking evaluation framework
- Used for DiffDock validation

View File

@@ -0,0 +1,163 @@
# DiffDock Configuration Parameters Reference
This document provides comprehensive details on all DiffDock configuration parameters and command-line options.
## Model & Checkpoint Settings
### Model Paths
- **`--model_dir`**: Directory containing the score model checkpoint
- Default: `./workdir/v1.1/score_model`
- DiffDock-L model (current default)
- **`--confidence_model_dir`**: Directory containing the confidence model checkpoint
- Default: `./workdir/v1.1/confidence_model`
- **`--ckpt`**: Name of the score model checkpoint file
- Default: `best_ema_inference_epoch_model.pt`
- **`--confidence_ckpt`**: Name of the confidence model checkpoint file
- Default: `best_model_epoch75.pt`
### Model Version Flags
- **`--old_score_model`**: Use original DiffDock model instead of DiffDock-L
- Default: `false` (uses DiffDock-L)
- **`--old_filtering_model`**: Use legacy confidence filtering approach
- Default: `true`
## Input/Output Options
### Input Specification
- **`--protein_path`**: Path to protein PDB file
- Example: `--protein_path protein.pdb`
- Alternative to `--protein_sequence`
- **`--protein_sequence`**: Amino acid sequence for ESMFold folding
- Automatically generates protein structure from sequence
- Alternative to `--protein_path`
- **`--ligand`**: Ligand specification (SMILES string or file path)
- SMILES string: `--ligand "COc(cc1)ccc1C#N"`
- File path: `--ligand ligand.sdf` or `.mol2`
- **`--protein_ligand_csv`**: CSV file for batch processing
- Required columns: `complex_name`, `protein_path`, `ligand_description`, `protein_sequence`
- Example: `--protein_ligand_csv data/protein_ligand_example.csv`
### Output Control
- **`--out_dir`**: Output directory for predictions
- Example: `--out_dir results/user_predictions/`
- **`--save_visualisation`**: Export predicted molecules as SDF files
- Enables visualization of results
## Inference Parameters
### Diffusion Steps
- **`--inference_steps`**: Number of planned inference iterations
- Default: `20`
- Higher values may improve accuracy but increase runtime
- **`--actual_steps`**: Actual diffusion steps executed
- Default: `19`
- **`--no_final_step_noise`**: Omit noise at the final diffusion step
- Default: `true`
### Sampling Settings
- **`--samples_per_complex`**: Number of samples to generate per complex
- Default: `10`
- More samples provide better coverage but increase computation
- **`--sigma_schedule`**: Noise schedule type
- Default: `expbeta` (exponential-beta)
- **`--initial_noise_std_proportion`**: Initial noise standard deviation scaling
- Default: `1.46`
### Temperature Parameters
#### Sampling Temperatures (Controls diversity of predictions)
- **`--temp_sampling_tr`**: Translation sampling temperature
- Default: `1.17`
- **`--temp_sampling_rot`**: Rotation sampling temperature
- Default: `2.06`
- **`--temp_sampling_tor`**: Torsion sampling temperature
- Default: `7.04`
#### Psi Angle Temperatures
- **`--temp_psi_tr`**: Translation psi temperature
- Default: `0.73`
- **`--temp_psi_rot`**: Rotation psi temperature
- Default: `0.90`
- **`--temp_psi_tor`**: Torsion psi temperature
- Default: `0.59`
#### Sigma Data Temperatures
- **`--temp_sigma_data_tr`**: Translation data distribution scaling
- Default: `0.93`
- **`--temp_sigma_data_rot`**: Rotation data distribution scaling
- Default: `0.75`
- **`--temp_sigma_data_tor`**: Torsion data distribution scaling
- Default: `0.69`
## Processing Options
### Performance
- **`--batch_size`**: Processing batch size
- Default: `10`
- Larger values increase throughput but require more memory
- **`--tqdm`**: Enable progress bar visualization
- Useful for monitoring long-running jobs
### Protein Structure
- **`--chain_cutoff`**: Maximum number of protein chains to process
- Example: `--chain_cutoff 10`
- Useful for large multi-chain complexes
- **`--esm_embeddings_path`**: Path to pre-computed ESM2 protein embeddings
- Speeds up inference by reusing embeddings
- Optional optimization
### Dataset Options
- **`--split`**: Dataset split to use (train/test/val)
- Used for evaluation on standard benchmarks
## Advanced Flags
### Debugging & Testing
- **`--no_model`**: Disable model inference (debugging)
- Default: `false`
- **`--no_random`**: Disable randomization
- Default: `false`
- Useful for reproducibility testing
### Alternative Sampling
- **`--ode`**: Use ODE solver instead of SDE
- Default: `false`
- Alternative sampling approach
- **`--different_schedules`**: Use different noise schedules per component
- Default: `false`
### Error Handling
- **`--limit_failures`**: Maximum allowed failures before stopping
- Default: `5`
## Configuration File
All parameters can be specified in a YAML configuration file (typically `default_inference_args.yaml`) or overridden via command line:
```bash
python -m inference --config default_inference_args.yaml --samples_per_complex 20
```
Command-line arguments take precedence over configuration file values.

View File

@@ -0,0 +1,392 @@
# DiffDock Workflows and Examples
This document provides practical workflows and usage examples for common DiffDock tasks.
## Installation and Setup
### Conda Installation (Recommended)
```bash
# Clone repository
git clone https://github.com/gcorso/DiffDock.git
cd DiffDock
# Create conda environment
conda env create --file environment.yml
conda activate diffdock
```
### Docker Installation
```bash
# Pull Docker image
docker pull rbgcsail/diffdock
# Run container with GPU support
docker run -it --gpus all --entrypoint /bin/bash rbgcsail/diffdock
# Inside container, activate environment
micromamba activate diffdock
```
### First Run
The first execution pre-computes SO(2) and SO(3) lookup tables, taking a few minutes. Subsequent runs start immediately.
## Workflow 1: Single Protein-Ligand Docking
### Using PDB File and SMILES String
```bash
python -m inference \
--config default_inference_args.yaml \
--protein_path examples/protein.pdb \
--ligand "COc1ccc(C(=O)Nc2ccccc2)cc1" \
--out_dir results/single_docking/
```
**Output Structure**:
```
results/single_docking/
├── index_0_rank_1.sdf # Top-ranked prediction
├── index_0_rank_2.sdf # Second-ranked prediction
├── ...
├── index_0_rank_10.sdf # 10th prediction (if samples_per_complex=10)
└── confidence_scores.txt # Scores for all predictions
```
### Using Ligand Structure File
```bash
python -m inference \
--config default_inference_args.yaml \
--protein_path protein.pdb \
--ligand ligand.sdf \
--out_dir results/ligand_file/
```
**Supported ligand formats**: SDF, MOL2, or any format readable by RDKit
## Workflow 2: Protein Sequence to Structure Docking
### Using ESMFold for Protein Folding
```bash
python -m inference \
--config default_inference_args.yaml \
--protein_sequence "MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK" \
--ligand "CC(C)Cc1ccc(cc1)C(C)C(=O)O" \
--out_dir results/sequence_docking/
```
**Use Cases**:
- Protein structure not available in PDB
- Modeling mutations or variants
- De novo protein design validation
**Note**: ESMFold folding adds computation time (30s-5min depending on sequence length)
## Workflow 3: Batch Processing Multiple Complexes
### Prepare CSV File
Create `complexes.csv` with required columns:
```csv
complex_name,protein_path,ligand_description,protein_sequence
complex1,proteins/protein1.pdb,CC(=O)Oc1ccccc1C(=O)O,
complex2,,COc1ccc(C#N)cc1,MSKGEELFTGVVPILVELDGDVNGHKF...
complex3,proteins/protein3.pdb,ligands/ligand3.sdf,
```
**Column Descriptions**:
- `complex_name`: Unique identifier for the complex
- `protein_path`: Path to PDB file (leave empty if using sequence)
- `ligand_description`: SMILES string or path to ligand file
- `protein_sequence`: Amino acid sequence (leave empty if using PDB)
### Run Batch Docking
```bash
python -m inference \
--config default_inference_args.yaml \
--protein_ligand_csv complexes.csv \
--out_dir results/batch_predictions/ \
--batch_size 10
```
**Output Structure**:
```
results/batch_predictions/
├── complex1/
│ ├── rank_1.sdf
│ ├── rank_2.sdf
│ └── ...
├── complex2/
│ ├── rank_1.sdf
│ └── ...
└── complex3/
└── ...
```
## Workflow 4: High-Throughput Virtual Screening
### Setup for Screening Large Ligand Libraries
```python
# generate_screening_csv.py
import pandas as pd
# Load ligand library
ligands = pd.read_csv("ligand_library.csv") # Contains SMILES
# Create DiffDock input
screening_data = {
"complex_name": [f"screen_{i}" for i in range(len(ligands))],
"protein_path": ["target_protein.pdb"] * len(ligands),
"ligand_description": ligands["smiles"].tolist(),
"protein_sequence": [""] * len(ligands)
}
df = pd.DataFrame(screening_data)
df.to_csv("screening_input.csv", index=False)
```
### Run Screening
```bash
# Pre-compute ESM embeddings for faster screening
python datasets/esm_embedding_preparation.py \
--protein_ligand_csv screening_input.csv \
--out_file protein_embeddings.pt
# Run docking with pre-computed embeddings
python -m inference \
--config default_inference_args.yaml \
--protein_ligand_csv screening_input.csv \
--esm_embeddings_path protein_embeddings.pt \
--out_dir results/virtual_screening/ \
--batch_size 32
```
### Post-Processing: Extract Top Hits
```python
# analyze_screening_results.py
import os
import pandas as pd
results = []
results_dir = "results/virtual_screening/"
for complex_dir in os.listdir(results_dir):
confidence_file = os.path.join(results_dir, complex_dir, "confidence_scores.txt")
if os.path.exists(confidence_file):
with open(confidence_file) as f:
scores = [float(line.strip()) for line in f]
top_score = max(scores)
results.append({"complex": complex_dir, "top_confidence": top_score})
# Sort by confidence
df = pd.DataFrame(results)
df_sorted = df.sort_values("top_confidence", ascending=False)
# Get top 100 hits
top_hits = df_sorted.head(100)
top_hits.to_csv("top_hits.csv", index=False)
```
## Workflow 5: Ensemble Docking with Protein Flexibility
### Prepare Protein Ensemble
```python
# For proteins with known flexibility, use multiple conformations
# Example: Using MD snapshots or crystal structures
# create_ensemble_csv.py
import pandas as pd
conformations = [
"protein_conf1.pdb",
"protein_conf2.pdb",
"protein_conf3.pdb",
"protein_conf4.pdb"
]
ligand = "CC(C)Cc1ccc(cc1)C(C)C(=O)O"
data = {
"complex_name": [f"ensemble_{i}" for i in range(len(conformations))],
"protein_path": conformations,
"ligand_description": [ligand] * len(conformations),
"protein_sequence": [""] * len(conformations)
}
pd.DataFrame(data).to_csv("ensemble_input.csv", index=False)
```
### Run Ensemble Docking
```bash
python -m inference \
--config default_inference_args.yaml \
--protein_ligand_csv ensemble_input.csv \
--out_dir results/ensemble_docking/ \
--samples_per_complex 20 # More samples per conformation
```
## Workflow 6: Integration with Downstream Analysis
### Example: DiffDock + GNINA Rescoring
```bash
# 1. Run DiffDock
python -m inference \
--config default_inference_args.yaml \
--protein_path protein.pdb \
--ligand "CC(=O)OC1=CC=CC=C1C(=O)O" \
--out_dir results/diffdock_poses/ \
--save_visualisation
# 2. Rescore with GNINA
for pose in results/diffdock_poses/*.sdf; do
gnina -r protein.pdb -l "$pose" --score_only -o "${pose%.sdf}_gnina.sdf"
done
```
### Example: DiffDock + OpenMM Energy Minimization
```python
# minimize_poses.py
from openmm import app, LangevinIntegrator, Platform
from openmm.app import ForceField, Modeller, PDBFile
from rdkit import Chem
import os
# Load protein
protein = PDBFile('protein.pdb')
forcefield = ForceField('amber14-all.xml', 'amber14/tip3pfb.xml')
# Process each DiffDock pose
pose_dir = 'results/diffdock_poses/'
for pose_file in os.listdir(pose_dir):
if pose_file.endswith('.sdf'):
# Load ligand
mol = Chem.SDMolSupplier(os.path.join(pose_dir, pose_file))[0]
# Combine protein + ligand
modeller = Modeller(protein.topology, protein.positions)
# ... add ligand to modeller ...
# Create system and minimize
system = forcefield.createSystem(modeller.topology)
integrator = LangevinIntegrator(300, 1.0, 0.002)
simulation = app.Simulation(modeller.topology, system, integrator)
simulation.minimizeEnergy(maxIterations=1000)
# Save minimized structure
positions = simulation.context.getState(getPositions=True).getPositions()
PDBFile.writeFile(simulation.topology, positions,
open(f"minimized_{pose_file}.pdb", 'w'))
```
## Workflow 7: Using the Graphical Interface
### Launch Web Interface
```bash
python app/main.py
```
### Access Interface
Navigate to `http://localhost:7860` in web browser
### Features
- Upload protein PDB or enter sequence
- Input ligand SMILES or upload structure
- Adjust inference parameters via GUI
- Visualize results interactively
- Download predictions directly
### Online Alternative
Use the Hugging Face Spaces demo without local installation:
- URL: https://huggingface.co/spaces/reginabarzilaygroup/DiffDock-Web
## Advanced Configuration
### Custom Inference Settings
Create custom YAML configuration:
```yaml
# custom_inference.yaml
# Model settings
model_dir: ./workdir/v1.1/score_model
confidence_model_dir: ./workdir/v1.1/confidence_model
# Sampling parameters
samples_per_complex: 20 # More samples for better coverage
inference_steps: 25 # More steps for accuracy
# Temperature adjustments (increase for more diversity)
temp_sampling_tr: 1.3
temp_sampling_rot: 2.2
temp_sampling_tor: 7.5
# Output
save_visualisation: true
```
Use custom configuration:
```bash
python -m inference \
--config custom_inference.yaml \
--protein_path protein.pdb \
--ligand "CC(=O)OC1=CC=CC=C1C(=O)O" \
--out_dir results/custom_config/
```
## Troubleshooting Common Issues
### Issue: Out of Memory Errors
**Solution**: Reduce batch size
```bash
python -m inference ... --batch_size 2
```
### Issue: Slow Performance
**Solution**: Ensure GPU usage
```python
import torch
print(torch.cuda.is_available()) # Should return True
```
### Issue: Poor Predictions for Large Ligands
**Solution**: Increase sampling diversity
```bash
python -m inference ... --samples_per_complex 40 --temp_sampling_tor 9.0
```
### Issue: Protein with Many Chains
**Solution**: Limit chains or isolate binding site
```bash
python -m inference ... --chain_cutoff 4
```
Or pre-process PDB to include only relevant chains.
## Best Practices Summary
1. **Start Simple**: Test with single complex before batch processing
2. **GPU Essential**: Use GPU for reasonable performance
3. **Multiple Samples**: Generate 10-40 samples for robust predictions
4. **Validate Results**: Use molecular visualization and complementary scoring
5. **Consider Confidence**: Use confidence scores for initial ranking, not final decisions
6. **Iterate Parameters**: Adjust temperature/steps for specific systems
7. **Pre-compute Embeddings**: For repeated use of same protein
8. **Combine Tools**: Integrate with scoring functions and energy minimization