Files
gh-k-dense-ai-claude-scient…/skills/diffdock/references/workflows_examples.md
2025-11-30 08:30:10 +08:00

10 KiB

DiffDock Workflows and Examples

This document provides practical workflows and usage examples for common DiffDock tasks.

Installation and Setup

# Clone repository
git clone https://github.com/gcorso/DiffDock.git
cd DiffDock

# Create conda environment
conda env create --file environment.yml
conda activate diffdock

Docker Installation

# Pull Docker image
docker pull rbgcsail/diffdock

# Run container with GPU support
docker run -it --gpus all --entrypoint /bin/bash rbgcsail/diffdock

# Inside container, activate environment
micromamba activate diffdock

First Run

The first execution pre-computes SO(2) and SO(3) lookup tables, taking a few minutes. Subsequent runs start immediately.

Workflow 1: Single Protein-Ligand Docking

Using PDB File and SMILES String

python -m inference \
  --config default_inference_args.yaml \
  --protein_path examples/protein.pdb \
  --ligand "COc1ccc(C(=O)Nc2ccccc2)cc1" \
  --out_dir results/single_docking/

Output Structure:

results/single_docking/
├── index_0_rank_1.sdf       # Top-ranked prediction
├── index_0_rank_2.sdf       # Second-ranked prediction
├── ...
├── index_0_rank_10.sdf      # 10th prediction (if samples_per_complex=10)
└── confidence_scores.txt    # Scores for all predictions

Using Ligand Structure File

python -m inference \
  --config default_inference_args.yaml \
  --protein_path protein.pdb \
  --ligand ligand.sdf \
  --out_dir results/ligand_file/

Supported ligand formats: SDF, MOL2, or any format readable by RDKit

Workflow 2: Protein Sequence to Structure Docking

Using ESMFold for Protein Folding

python -m inference \
  --config default_inference_args.yaml \
  --protein_sequence "MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK" \
  --ligand "CC(C)Cc1ccc(cc1)C(C)C(=O)O" \
  --out_dir results/sequence_docking/

Use Cases:

  • Protein structure not available in PDB
  • Modeling mutations or variants
  • De novo protein design validation

Note: ESMFold folding adds computation time (30s-5min depending on sequence length)

Workflow 3: Batch Processing Multiple Complexes

Prepare CSV File

Create complexes.csv with required columns:

complex_name,protein_path,ligand_description,protein_sequence
complex1,proteins/protein1.pdb,CC(=O)Oc1ccccc1C(=O)O,
complex2,,COc1ccc(C#N)cc1,MSKGEELFTGVVPILVELDGDVNGHKF...
complex3,proteins/protein3.pdb,ligands/ligand3.sdf,

Column Descriptions:

  • complex_name: Unique identifier for the complex
  • protein_path: Path to PDB file (leave empty if using sequence)
  • ligand_description: SMILES string or path to ligand file
  • protein_sequence: Amino acid sequence (leave empty if using PDB)

Run Batch Docking

python -m inference \
  --config default_inference_args.yaml \
  --protein_ligand_csv complexes.csv \
  --out_dir results/batch_predictions/ \
  --batch_size 10

Output Structure:

results/batch_predictions/
├── complex1/
│   ├── rank_1.sdf
│   ├── rank_2.sdf
│   └── ...
├── complex2/
│   ├── rank_1.sdf
│   └── ...
└── complex3/
    └── ...

Workflow 4: High-Throughput Virtual Screening

Setup for Screening Large Ligand Libraries

# generate_screening_csv.py
import pandas as pd

# Load ligand library
ligands = pd.read_csv("ligand_library.csv")  # Contains SMILES

# Create DiffDock input
screening_data = {
    "complex_name": [f"screen_{i}" for i in range(len(ligands))],
    "protein_path": ["target_protein.pdb"] * len(ligands),
    "ligand_description": ligands["smiles"].tolist(),
    "protein_sequence": [""] * len(ligands)
}

df = pd.DataFrame(screening_data)
df.to_csv("screening_input.csv", index=False)

Run Screening

# Pre-compute ESM embeddings for faster screening
python datasets/esm_embedding_preparation.py \
  --protein_ligand_csv screening_input.csv \
  --out_file protein_embeddings.pt

# Run docking with pre-computed embeddings
python -m inference \
  --config default_inference_args.yaml \
  --protein_ligand_csv screening_input.csv \
  --esm_embeddings_path protein_embeddings.pt \
  --out_dir results/virtual_screening/ \
  --batch_size 32

Post-Processing: Extract Top Hits

# analyze_screening_results.py
import os
import pandas as pd

results = []
results_dir = "results/virtual_screening/"

for complex_dir in os.listdir(results_dir):
    confidence_file = os.path.join(results_dir, complex_dir, "confidence_scores.txt")
    if os.path.exists(confidence_file):
        with open(confidence_file) as f:
            scores = [float(line.strip()) for line in f]
            top_score = max(scores)
            results.append({"complex": complex_dir, "top_confidence": top_score})

# Sort by confidence
df = pd.DataFrame(results)
df_sorted = df.sort_values("top_confidence", ascending=False)

# Get top 100 hits
top_hits = df_sorted.head(100)
top_hits.to_csv("top_hits.csv", index=False)

Workflow 5: Ensemble Docking with Protein Flexibility

Prepare Protein Ensemble

# For proteins with known flexibility, use multiple conformations
# Example: Using MD snapshots or crystal structures

# create_ensemble_csv.py
import pandas as pd

conformations = [
    "protein_conf1.pdb",
    "protein_conf2.pdb",
    "protein_conf3.pdb",
    "protein_conf4.pdb"
]

ligand = "CC(C)Cc1ccc(cc1)C(C)C(=O)O"

data = {
    "complex_name": [f"ensemble_{i}" for i in range(len(conformations))],
    "protein_path": conformations,
    "ligand_description": [ligand] * len(conformations),
    "protein_sequence": [""] * len(conformations)
}

pd.DataFrame(data).to_csv("ensemble_input.csv", index=False)

Run Ensemble Docking

python -m inference \
  --config default_inference_args.yaml \
  --protein_ligand_csv ensemble_input.csv \
  --out_dir results/ensemble_docking/ \
  --samples_per_complex 20  # More samples per conformation

Workflow 6: Integration with Downstream Analysis

Example: DiffDock + GNINA Rescoring

# 1. Run DiffDock
python -m inference \
  --config default_inference_args.yaml \
  --protein_path protein.pdb \
  --ligand "CC(=O)OC1=CC=CC=C1C(=O)O" \
  --out_dir results/diffdock_poses/ \
  --save_visualisation

# 2. Rescore with GNINA
for pose in results/diffdock_poses/*.sdf; do
    gnina -r protein.pdb -l "$pose" --score_only -o "${pose%.sdf}_gnina.sdf"
done

Example: DiffDock + OpenMM Energy Minimization

# minimize_poses.py
from openmm import app, LangevinIntegrator, Platform
from openmm.app import ForceField, Modeller, PDBFile
from rdkit import Chem
import os

# Load protein
protein = PDBFile('protein.pdb')
forcefield = ForceField('amber14-all.xml', 'amber14/tip3pfb.xml')

# Process each DiffDock pose
pose_dir = 'results/diffdock_poses/'
for pose_file in os.listdir(pose_dir):
    if pose_file.endswith('.sdf'):
        # Load ligand
        mol = Chem.SDMolSupplier(os.path.join(pose_dir, pose_file))[0]

        # Combine protein + ligand
        modeller = Modeller(protein.topology, protein.positions)
        # ... add ligand to modeller ...

        # Create system and minimize
        system = forcefield.createSystem(modeller.topology)
        integrator = LangevinIntegrator(300, 1.0, 0.002)
        simulation = app.Simulation(modeller.topology, system, integrator)
        simulation.minimizeEnergy(maxIterations=1000)

        # Save minimized structure
        positions = simulation.context.getState(getPositions=True).getPositions()
        PDBFile.writeFile(simulation.topology, positions,
                         open(f"minimized_{pose_file}.pdb", 'w'))

Workflow 7: Using the Graphical Interface

Launch Web Interface

python app/main.py

Access Interface

Navigate to http://localhost:7860 in web browser

Features

  • Upload protein PDB or enter sequence
  • Input ligand SMILES or upload structure
  • Adjust inference parameters via GUI
  • Visualize results interactively
  • Download predictions directly

Online Alternative

Use the Hugging Face Spaces demo without local installation:

Advanced Configuration

Custom Inference Settings

Create custom YAML configuration:

# custom_inference.yaml
# Model settings
model_dir: ./workdir/v1.1/score_model
confidence_model_dir: ./workdir/v1.1/confidence_model

# Sampling parameters
samples_per_complex: 20  # More samples for better coverage
inference_steps: 25      # More steps for accuracy

# Temperature adjustments (increase for more diversity)
temp_sampling_tr: 1.3
temp_sampling_rot: 2.2
temp_sampling_tor: 7.5

# Output
save_visualisation: true

Use custom configuration:

python -m inference \
  --config custom_inference.yaml \
  --protein_path protein.pdb \
  --ligand "CC(=O)OC1=CC=CC=C1C(=O)O" \
  --out_dir results/custom_config/

Troubleshooting Common Issues

Issue: Out of Memory Errors

Solution: Reduce batch size

python -m inference ... --batch_size 2

Issue: Slow Performance

Solution: Ensure GPU usage

import torch
print(torch.cuda.is_available())  # Should return True

Issue: Poor Predictions for Large Ligands

Solution: Increase sampling diversity

python -m inference ... --samples_per_complex 40 --temp_sampling_tor 9.0

Issue: Protein with Many Chains

Solution: Limit chains or isolate binding site

python -m inference ... --chain_cutoff 4

Or pre-process PDB to include only relevant chains.

Best Practices Summary

  1. Start Simple: Test with single complex before batch processing
  2. GPU Essential: Use GPU for reasonable performance
  3. Multiple Samples: Generate 10-40 samples for robust predictions
  4. Validate Results: Use molecular visualization and complementary scoring
  5. Consider Confidence: Use confidence scores for initial ranking, not final decisions
  6. Iterate Parameters: Adjust temperature/steps for specific systems
  7. Pre-compute Embeddings: For repeated use of same protein
  8. Combine Tools: Integrate with scoring functions and energy minimization