10 KiB
DiffDock Workflows and Examples
This document provides practical workflows and usage examples for common DiffDock tasks.
Installation and Setup
Conda Installation (Recommended)
# Clone repository
git clone https://github.com/gcorso/DiffDock.git
cd DiffDock
# Create conda environment
conda env create --file environment.yml
conda activate diffdock
Docker Installation
# Pull Docker image
docker pull rbgcsail/diffdock
# Run container with GPU support
docker run -it --gpus all --entrypoint /bin/bash rbgcsail/diffdock
# Inside container, activate environment
micromamba activate diffdock
First Run
The first execution pre-computes SO(2) and SO(3) lookup tables, taking a few minutes. Subsequent runs start immediately.
Workflow 1: Single Protein-Ligand Docking
Using PDB File and SMILES String
python -m inference \
--config default_inference_args.yaml \
--protein_path examples/protein.pdb \
--ligand "COc1ccc(C(=O)Nc2ccccc2)cc1" \
--out_dir results/single_docking/
Output Structure:
results/single_docking/
├── index_0_rank_1.sdf # Top-ranked prediction
├── index_0_rank_2.sdf # Second-ranked prediction
├── ...
├── index_0_rank_10.sdf # 10th prediction (if samples_per_complex=10)
└── confidence_scores.txt # Scores for all predictions
Using Ligand Structure File
python -m inference \
--config default_inference_args.yaml \
--protein_path protein.pdb \
--ligand ligand.sdf \
--out_dir results/ligand_file/
Supported ligand formats: SDF, MOL2, or any format readable by RDKit
Workflow 2: Protein Sequence to Structure Docking
Using ESMFold for Protein Folding
python -m inference \
--config default_inference_args.yaml \
--protein_sequence "MSKGEELFTGVVPILVELDGDVNGHKFSVSGEGEGDATYGKLTLKFICTTGKLPVPWPTLVTTFSYGVQCFSRYPDHMKQHDFFKSAMPEGYVQERTIFFKDDGNYKTRAEVKFEGDTLVNRIELKGIDFKEDGNILGHKLEYNYNSHNVYIMADKQKNGIKVNFKIRHNIEDGSVQLADHYQQNTPIGDGPVLLPDNHYLSTQSALSKDPNEKRDHMVLLEFVTAAGITHGMDELYK" \
--ligand "CC(C)Cc1ccc(cc1)C(C)C(=O)O" \
--out_dir results/sequence_docking/
Use Cases:
- Protein structure not available in PDB
- Modeling mutations or variants
- De novo protein design validation
Note: ESMFold folding adds computation time (30s-5min depending on sequence length)
Workflow 3: Batch Processing Multiple Complexes
Prepare CSV File
Create complexes.csv with required columns:
complex_name,protein_path,ligand_description,protein_sequence
complex1,proteins/protein1.pdb,CC(=O)Oc1ccccc1C(=O)O,
complex2,,COc1ccc(C#N)cc1,MSKGEELFTGVVPILVELDGDVNGHKF...
complex3,proteins/protein3.pdb,ligands/ligand3.sdf,
Column Descriptions:
complex_name: Unique identifier for the complexprotein_path: Path to PDB file (leave empty if using sequence)ligand_description: SMILES string or path to ligand fileprotein_sequence: Amino acid sequence (leave empty if using PDB)
Run Batch Docking
python -m inference \
--config default_inference_args.yaml \
--protein_ligand_csv complexes.csv \
--out_dir results/batch_predictions/ \
--batch_size 10
Output Structure:
results/batch_predictions/
├── complex1/
│ ├── rank_1.sdf
│ ├── rank_2.sdf
│ └── ...
├── complex2/
│ ├── rank_1.sdf
│ └── ...
└── complex3/
└── ...
Workflow 4: High-Throughput Virtual Screening
Setup for Screening Large Ligand Libraries
# generate_screening_csv.py
import pandas as pd
# Load ligand library
ligands = pd.read_csv("ligand_library.csv") # Contains SMILES
# Create DiffDock input
screening_data = {
"complex_name": [f"screen_{i}" for i in range(len(ligands))],
"protein_path": ["target_protein.pdb"] * len(ligands),
"ligand_description": ligands["smiles"].tolist(),
"protein_sequence": [""] * len(ligands)
}
df = pd.DataFrame(screening_data)
df.to_csv("screening_input.csv", index=False)
Run Screening
# Pre-compute ESM embeddings for faster screening
python datasets/esm_embedding_preparation.py \
--protein_ligand_csv screening_input.csv \
--out_file protein_embeddings.pt
# Run docking with pre-computed embeddings
python -m inference \
--config default_inference_args.yaml \
--protein_ligand_csv screening_input.csv \
--esm_embeddings_path protein_embeddings.pt \
--out_dir results/virtual_screening/ \
--batch_size 32
Post-Processing: Extract Top Hits
# analyze_screening_results.py
import os
import pandas as pd
results = []
results_dir = "results/virtual_screening/"
for complex_dir in os.listdir(results_dir):
confidence_file = os.path.join(results_dir, complex_dir, "confidence_scores.txt")
if os.path.exists(confidence_file):
with open(confidence_file) as f:
scores = [float(line.strip()) for line in f]
top_score = max(scores)
results.append({"complex": complex_dir, "top_confidence": top_score})
# Sort by confidence
df = pd.DataFrame(results)
df_sorted = df.sort_values("top_confidence", ascending=False)
# Get top 100 hits
top_hits = df_sorted.head(100)
top_hits.to_csv("top_hits.csv", index=False)
Workflow 5: Ensemble Docking with Protein Flexibility
Prepare Protein Ensemble
# For proteins with known flexibility, use multiple conformations
# Example: Using MD snapshots or crystal structures
# create_ensemble_csv.py
import pandas as pd
conformations = [
"protein_conf1.pdb",
"protein_conf2.pdb",
"protein_conf3.pdb",
"protein_conf4.pdb"
]
ligand = "CC(C)Cc1ccc(cc1)C(C)C(=O)O"
data = {
"complex_name": [f"ensemble_{i}" for i in range(len(conformations))],
"protein_path": conformations,
"ligand_description": [ligand] * len(conformations),
"protein_sequence": [""] * len(conformations)
}
pd.DataFrame(data).to_csv("ensemble_input.csv", index=False)
Run Ensemble Docking
python -m inference \
--config default_inference_args.yaml \
--protein_ligand_csv ensemble_input.csv \
--out_dir results/ensemble_docking/ \
--samples_per_complex 20 # More samples per conformation
Workflow 6: Integration with Downstream Analysis
Example: DiffDock + GNINA Rescoring
# 1. Run DiffDock
python -m inference \
--config default_inference_args.yaml \
--protein_path protein.pdb \
--ligand "CC(=O)OC1=CC=CC=C1C(=O)O" \
--out_dir results/diffdock_poses/ \
--save_visualisation
# 2. Rescore with GNINA
for pose in results/diffdock_poses/*.sdf; do
gnina -r protein.pdb -l "$pose" --score_only -o "${pose%.sdf}_gnina.sdf"
done
Example: DiffDock + OpenMM Energy Minimization
# minimize_poses.py
from openmm import app, LangevinIntegrator, Platform
from openmm.app import ForceField, Modeller, PDBFile
from rdkit import Chem
import os
# Load protein
protein = PDBFile('protein.pdb')
forcefield = ForceField('amber14-all.xml', 'amber14/tip3pfb.xml')
# Process each DiffDock pose
pose_dir = 'results/diffdock_poses/'
for pose_file in os.listdir(pose_dir):
if pose_file.endswith('.sdf'):
# Load ligand
mol = Chem.SDMolSupplier(os.path.join(pose_dir, pose_file))[0]
# Combine protein + ligand
modeller = Modeller(protein.topology, protein.positions)
# ... add ligand to modeller ...
# Create system and minimize
system = forcefield.createSystem(modeller.topology)
integrator = LangevinIntegrator(300, 1.0, 0.002)
simulation = app.Simulation(modeller.topology, system, integrator)
simulation.minimizeEnergy(maxIterations=1000)
# Save minimized structure
positions = simulation.context.getState(getPositions=True).getPositions()
PDBFile.writeFile(simulation.topology, positions,
open(f"minimized_{pose_file}.pdb", 'w'))
Workflow 7: Using the Graphical Interface
Launch Web Interface
python app/main.py
Access Interface
Navigate to http://localhost:7860 in web browser
Features
- Upload protein PDB or enter sequence
- Input ligand SMILES or upload structure
- Adjust inference parameters via GUI
- Visualize results interactively
- Download predictions directly
Online Alternative
Use the Hugging Face Spaces demo without local installation:
Advanced Configuration
Custom Inference Settings
Create custom YAML configuration:
# custom_inference.yaml
# Model settings
model_dir: ./workdir/v1.1/score_model
confidence_model_dir: ./workdir/v1.1/confidence_model
# Sampling parameters
samples_per_complex: 20 # More samples for better coverage
inference_steps: 25 # More steps for accuracy
# Temperature adjustments (increase for more diversity)
temp_sampling_tr: 1.3
temp_sampling_rot: 2.2
temp_sampling_tor: 7.5
# Output
save_visualisation: true
Use custom configuration:
python -m inference \
--config custom_inference.yaml \
--protein_path protein.pdb \
--ligand "CC(=O)OC1=CC=CC=C1C(=O)O" \
--out_dir results/custom_config/
Troubleshooting Common Issues
Issue: Out of Memory Errors
Solution: Reduce batch size
python -m inference ... --batch_size 2
Issue: Slow Performance
Solution: Ensure GPU usage
import torch
print(torch.cuda.is_available()) # Should return True
Issue: Poor Predictions for Large Ligands
Solution: Increase sampling diversity
python -m inference ... --samples_per_complex 40 --temp_sampling_tor 9.0
Issue: Protein with Many Chains
Solution: Limit chains or isolate binding site
python -m inference ... --chain_cutoff 4
Or pre-process PDB to include only relevant chains.
Best Practices Summary
- Start Simple: Test with single complex before batch processing
- GPU Essential: Use GPU for reasonable performance
- Multiple Samples: Generate 10-40 samples for robust predictions
- Validate Results: Use molecular visualization and complementary scoring
- Consider Confidence: Use confidence scores for initial ranking, not final decisions
- Iterate Parameters: Adjust temperature/steps for specific systems
- Pre-compute Embeddings: For repeated use of same protein
- Combine Tools: Integrate with scoring functions and energy minimization