Files
gh-jwplatta-prompt-library-…/skills/ruby-pattern-detector/SKILL.md
2025-11-30 08:30:07 +08:00

6.3 KiB

Ruby Pattern Detector Skill

Automatically detect and suggest common Ruby patterns when working with Ruby code.

When to Activate

This skill activates when:

  • Reading or editing Ruby files
  • User asks about Ruby patterns or best practices
  • Refactoring Ruby code
  • Reviewing Ruby code

Patterns to Detect

1. Data Object Pattern

Detect:

  • Classes with many attr_reader/attr_accessor declarations
  • Classes that primarily hold data
  • Classes with to_h or to_json methods

Suggest:

class DataObject
  # Add .build class method for construction
  def self.build(attributes)
    new(
      name: attributes[:name],
      email: attributes[:email]
    )
  end
  
  # Add serialization
  def to_h
    {
      name: name,
      email: email
    }
  end
  
  # Add factory methods
  def self.from_json(json)
    build(JSON.parse(json, symbolize_names: true))
  end
  
  def self.from_h(hash)
    build(hash)
  end
end

2. Loggable Module Pattern

Detect:

  • Classes with logging statements
  • Multiple classes that need logging
  • Direct Logger instantiation in classes

Suggest:

# Create shared Loggable module
module Loggable
  def logger
    @logger ||= Logger.new(STDOUT).tap do |log|
      log.progname = self.class.name
      log.level = ENV.fetch('LOG_LEVEL', 'INFO')
    end
  end
end

# Include in classes
class MyClass
  include Loggable
  
  def process
    logger.info "Processing started"
    # ...
    logger.debug "Details: #{details}"
  end
end

3. Custom Exception Pattern

Detect:

  • Raising generic exceptions (RuntimeError, StandardError)
  • Classes with domain-specific errors
  • Rescue blocks catching broad exceptions

Suggest:

# Define custom exceptions
module MyApp
  class Error < StandardError; end
  class NotFoundError < Error; end
  class ValidationError < Error; end
  class AuthenticationError < Error; end
end

# Use specific exceptions
class UserService
  def find(id)
    user = repository.find(id)
    raise MyApp::NotFoundError, "User #{id} not found" unless user
    user
  end
  
  def authenticate(credentials)
    raise MyApp::ValidationError, "Invalid credentials" if invalid?(credentials)
    # ...
  rescue SomeExternalError => e
    raise MyApp::AuthenticationError, "Auth failed: #{e.message}"
  end
end

4. Dependency Injection Pattern

Detect:

  • Classes instantiating other classes directly
  • Hard-coded dependencies
  • Difficult to test classes
  • Use of global state or singletons

Suggest:

# Before - hard-coded dependency
class OrderProcessor
  def process(order)
    mailer = EmailMailer.new
    mailer.send_confirmation(order)
  end
end

# After - injected dependency
class OrderProcessor
  def initialize(mailer: EmailMailer.new)
    @mailer = mailer
  end
  
  def process(order)
    @mailer.send_confirmation(order)
  end
end

# Easy to test with mock
processor = OrderProcessor.new(mailer: MockMailer.new)

5. Null Object Pattern

Detect:

  • Frequent nil checks
  • Conditional logic checking for nil
  • try or &. operators used extensively

Suggest:

# Create Null Object
class NullUser
  def name
    "Guest"
  end
  
  def email
    nil
  end
  
  def admin?
    false
  end
  
  def null?
    true
  end
end

# Use in code
class Session
  def current_user
    @current_user || NullUser.new
  end
end

# No more nil checks needed
session.current_user.name  # Returns "Guest" instead of raising error

6. Value Object Pattern

Detect:

  • Primitive obsession (lots of strings/integers used as domain concepts)
  • Data validation scattered throughout code
  • Lack of encapsulation for related data

Suggest:

# Before - primitive obsession
def send_email(email_string)
  raise "Invalid email" unless email_string =~ /\A[\w+\-.]+@[a-z\d\-]+(\.[a-z\d\-]+)*\.[a-z]+\z/i
  # ...
end

# After - Value Object
class Email
  attr_reader :value
  
  def initialize(value)
    @value = value.to_s.downcase.strip
    validate!
  end
  
  def ==(other)
    value == other.value
  end
  
  def to_s
    value
  end
  
  private
  
  def validate!
    raise ArgumentError, "Invalid email: #{value}" unless valid?
  end
  
  def valid?
    value =~ /\A[\w+\-.]+@[a-z\d\-]+(\.[a-z\d\-]+)*\.[a-z]+\z/i
  end
end

def send_email(email)
  # Email already validated
  mailer.send(to: email.to_s)
end

7. Query Object Pattern

Detect:

  • Complex ActiveRecord scopes
  • Long chains of where clauses
  • Business logic in controllers or models

Suggest:

# Extract to Query Object
class ActiveUsersQuery
  def initialize(relation = User.all)
    @relation = relation
  end
  
  def call
    @relation
      .where(active: true)
      .where('last_login_at > ?', 30.days.ago)
      .order(created_at: :desc)
  end
end

# Usage
active_users = ActiveUsersQuery.new.call
recent_active_users = ActiveUsersQuery.new(User.where('created_at > ?', 1.week.ago)).call

8. Service Object Pattern

Detect:

  • Fat controllers or models
  • Complex multi-step operations
  • Methods that orchestrate multiple objects

Suggest:

class CreateOrderService
  def initialize(user:, items:, payment_method:)
    @user = user
    @items = items
    @payment_method = payment_method
  end
  
  def call
    ActiveRecord::Base.transaction do
      order = create_order
      process_payment(order)
      send_confirmation(order)
      order
    end
  rescue PaymentError => e
    handle_payment_failure(e)
  end
  
  private
  
  attr_reader :user, :items, :payment_method
  
  def create_order
    # ...
  end
  
  def process_payment(order)
    # ...
  end
  
  def send_confirmation(order)
    # ...
  end
end

# Usage
result = CreateOrderService.new(
  user: current_user,
  items: cart.items,
  payment_method: params[:payment_method]
).call

Activation Response

When a pattern is detected, respond with:

Pattern Detected: [Pattern Name]

I noticed [specific code smell or opportunity].

This is a good opportunity to use the [Pattern Name] pattern, which:

  • [Benefit 1]
  • [Benefit 2]
  • [Benefit 3]

Would you like me to refactor this code to use this pattern?

[Show brief before/after example]

Guidelines

  • Only suggest patterns when clearly beneficial
  • Don't over-engineer simple code
  • Explain the "why" behind each pattern suggestion
  • Provide concrete code examples
  • Consider the context and project size
  • Balance between pattern purity and pragmatism