Files
gh-josiahsiegel-claude-code…/skills/container-apps-gpu-2025.md
2025-11-30 08:28:52 +08:00

625 lines
16 KiB
Markdown

## 🚨 CRITICAL GUIDELINES
### Windows File Path Requirements
**MANDATORY: Always Use Backslashes on Windows for File Paths**
When using Edit or Write tools on Windows, you MUST use backslashes (`\`) in file paths, NOT forward slashes (`/`).
**Examples:**
- ❌ WRONG: `D:/repos/project/file.tsx`
- ✅ CORRECT: `D:\repos\project\file.tsx`
This applies to:
- Edit tool file_path parameter
- Write tool file_path parameter
- All file operations on Windows systems
### Documentation Guidelines
**NEVER create new documentation files unless explicitly requested by the user.**
- **Priority**: Update existing README.md files rather than creating new documentation
- **Repository cleanliness**: Keep repository root clean - only README.md unless user requests otherwise
- **Style**: Documentation should be concise, direct, and professional - avoid AI-generated tone
- **User preference**: Only create additional .md files when user specifically asks for documentation
---
# Azure Container Apps GPU Support - 2025 Features
Complete knowledge base for Azure Container Apps with GPU support, serverless capabilities, and Dapr integration (2025 GA features).
## Overview
Azure Container Apps is a serverless container platform with native GPU support, Dapr integration, and scale-to-zero capabilities for cost-efficient AI/ML workloads.
## Key 2025 Features (Build Announcements)
### 1. Serverless GPU (GA)
- **Automatic scaling**: Scale GPU workloads based on demand
- **Scale-to-zero**: Pay only when GPU is actively used
- **Per-second billing**: Granular cost control
- **Optimized cold start**: Fast initialization for AI models
- **Reduced operational overhead**: No infrastructure management
### 2. Dedicated GPU (GA)
- **Consistent performance**: Dedicated GPU resources
- **Simplified AI deployment**: Easy model hosting
- **Long-running workloads**: Ideal for training and continuous inference
- **Multiple GPU types**: NVIDIA A100, T4, and more
### 3. Dynamic Sessions with GPU (Early Access)
- **Sandboxed execution**: Run untrusted AI-generated code
- **Hyper-V isolation**: Enhanced security
- **GPU-powered Python interpreter**: Handle compute-intensive AI workloads
- **Scale at runtime**: Dynamic resource allocation
### 4. Foundry Models Integration
- **Deploy AI models directly**: During container app creation
- **Ready-to-use models**: Pre-configured inference endpoints
- **Azure AI Foundry**: Seamless integration
### 5. Workflow with Durable Task Scheduler (Preview)
- **Long-running workflows**: Reliable orchestration
- **State management**: Automatic persistence
- **Event-driven**: Trigger workflows from events
### 6. Native Azure Functions Support
- **Functions runtime**: Run Azure Functions in Container Apps
- **Consistent development**: Same code, serverless execution
- **Event triggers**: All Functions triggers supported
### 7. Dapr Integration (GA)
- **Service discovery**: Built-in DNS-based discovery
- **State management**: Distributed state stores
- **Pub/sub messaging**: Reliable messaging patterns
- **Service invocation**: Resilient service-to-service calls
- **Observability**: Integrated tracing and metrics
## Creating Container Apps with GPU
### Basic Container App with Serverless GPU
```bash
# Create Container Apps environment
az containerapp env create \
--name myenv \
--resource-group MyRG \
--location eastus \
--logs-workspace-id <workspace-id> \
--logs-workspace-key <workspace-key>
# Create Container App with GPU
az containerapp create \
--name myapp-gpu \
--resource-group MyRG \
--environment myenv \
--image myregistry.azurecr.io/ai-model:latest \
--cpu 4 \
--memory 8Gi \
--gpu-type nvidia-a100 \
--gpu-count 1 \
--min-replicas 0 \
--max-replicas 10 \
--ingress external \
--target-port 8080
```
### Production-Ready Container App with GPU
```bash
az containerapp create \
--name myapp-gpu-prod \
--resource-group MyRG \
--environment myenv \
\
# Container configuration
--image myregistry.azurecr.io/ai-model:latest \
--registry-server myregistry.azurecr.io \
--registry-identity system \
\
# Resources
--cpu 4 \
--memory 8Gi \
--gpu-type nvidia-a100 \
--gpu-count 1 \
\
# Scaling
--min-replicas 0 \
--max-replicas 20 \
--scale-rule-name http-scaling \
--scale-rule-type http \
--scale-rule-http-concurrency 10 \
\
# Networking
--ingress external \
--target-port 8080 \
--transport http2 \
--exposed-port 8080 \
\
# Security
--registry-identity system \
--env-vars "AZURE_CLIENT_ID=secretref:client-id" \
\
# Monitoring
--dapr-app-id myapp \
--dapr-app-port 8080 \
--dapr-app-protocol http \
--enable-dapr \
\
# Identity
--system-assigned
```
## Container Apps Environment Configuration
### Environment with Zone Redundancy
```bash
az containerapp env create \
--name myenv-prod \
--resource-group MyRG \
--location eastus \
--logs-workspace-id <workspace-id> \
--logs-workspace-key <workspace-key> \
--zone-redundant true \
--enable-workload-profiles true
```
### Workload Profiles (Dedicated GPU)
```bash
# Create environment with workload profiles
az containerapp env create \
--name myenv-gpu \
--resource-group MyRG \
--location eastus \
--enable-workload-profiles true
# Add GPU workload profile
az containerapp env workload-profile add \
--name myenv-gpu \
--resource-group MyRG \
--workload-profile-name gpu-profile \
--workload-profile-type GPU-A100 \
--min-nodes 0 \
--max-nodes 10
# Create container app with GPU profile
az containerapp create \
--name myapp-dedicated-gpu \
--resource-group MyRG \
--environment myenv-gpu \
--workload-profile-name gpu-profile \
--image myregistry.azurecr.io/training-job:latest \
--cpu 8 \
--memory 16Gi \
--min-replicas 1 \
--max-replicas 5
```
## GPU Scaling Rules
### Custom Prometheus Scaling
```bash
az containerapp create \
--name myapp-gpu-prometheus \
--resource-group MyRG \
--environment myenv \
--image myregistry.azurecr.io/ai-model:latest \
--cpu 4 \
--memory 8Gi \
--gpu-type nvidia-a100 \
--gpu-count 1 \
--min-replicas 0 \
--max-replicas 10 \
--scale-rule-name gpu-utilization \
--scale-rule-type custom \
--scale-rule-custom-type prometheus \
--scale-rule-metadata \
serverAddress=http://prometheus.monitoring.svc.cluster.local:9090 \
metricName=gpu_utilization \
threshold=80 \
query="avg(nvidia_gpu_utilization{app='myapp'})"
```
### Queue-Based Scaling (Azure Service Bus)
```bash
az containerapp create \
--name myapp-queue-processor \
--resource-group MyRG \
--environment myenv \
--image myregistry.azurecr.io/batch-processor:latest \
--cpu 4 \
--memory 8Gi \
--gpu-type nvidia-t4 \
--gpu-count 1 \
--min-replicas 0 \
--max-replicas 50 \
--scale-rule-name queue-scaling \
--scale-rule-type azure-servicebus \
--scale-rule-metadata \
queueName=ai-jobs \
namespace=myservicebus \
messageCount=5 \
--scale-rule-auth connection=servicebus-connection
```
## Dapr Integration
### Enable Dapr on Container App
```bash
az containerapp create \
--name myapp-dapr \
--resource-group MyRG \
--environment myenv \
--image myregistry.azurecr.io/myapp:latest \
--enable-dapr \
--dapr-app-id myapp \
--dapr-app-port 8080 \
--dapr-app-protocol http \
--dapr-http-max-request-size 4 \
--dapr-http-read-buffer-size 4 \
--dapr-log-level info \
--dapr-enable-api-logging true
```
### Dapr State Store (Azure Cosmos DB)
```yaml
# Create Dapr component for state store
apiVersion: dapr.io/v1alpha1
kind: Component
metadata:
name: statestore
spec:
type: state.azure.cosmosdb
version: v1
metadata:
- name: url
value: "https://mycosmosdb.documents.azure.com:443/"
- name: masterKey
secretRef: cosmosdb-key
- name: database
value: "mydb"
- name: collection
value: "state"
```
```bash
# Create the component
az containerapp env dapr-component set \
--name myenv \
--resource-group MyRG \
--dapr-component-name statestore \
--yaml component.yaml
```
### Dapr Pub/Sub (Azure Service Bus)
```yaml
apiVersion: dapr.io/v1alpha1
kind: Component
metadata:
name: pubsub
spec:
type: pubsub.azure.servicebus.topics
version: v1
metadata:
- name: connectionString
secretRef: servicebus-connection
- name: consumerID
value: "myapp"
```
### Service-to-Service Invocation
```python
# Python example using Dapr SDK
from dapr.clients import DaprClient
with DaprClient() as client:
# Invoke another service
response = client.invoke_method(
app_id='other-service',
method_name='process',
data='{"input": "data"}'
)
# Save state
client.save_state(
store_name='statestore',
key='mykey',
value='myvalue'
)
# Publish message
client.publish_event(
pubsub_name='pubsub',
topic_name='orders',
data='{"orderId": "123"}'
)
```
## AI Model Deployment Patterns
### OpenAI-Compatible Endpoint
```dockerfile
# Dockerfile for vLLM model serving
FROM vllm/vllm-openai:latest
ENV MODEL_NAME="meta-llama/Llama-3.1-8B-Instruct"
ENV GPU_MEMORY_UTILIZATION=0.9
ENV MAX_MODEL_LEN=4096
CMD ["--model", "${MODEL_NAME}", \
"--gpu-memory-utilization", "${GPU_MEMORY_UTILIZATION}", \
"--max-model-len", "${MAX_MODEL_LEN}", \
"--port", "8080"]
```
```bash
# Deploy vLLM model
az containerapp create \
--name llama-inference \
--resource-group MyRG \
--environment myenv \
--image vllm/vllm-openai:latest \
--cpu 8 \
--memory 32Gi \
--gpu-type nvidia-a100 \
--gpu-count 1 \
--min-replicas 1 \
--max-replicas 5 \
--target-port 8080 \
--ingress external \
--env-vars \
MODEL_NAME="meta-llama/Llama-3.1-8B-Instruct" \
GPU_MEMORY_UTILIZATION="0.9" \
HF_TOKEN=secretref:huggingface-token
```
### Stable Diffusion Image Generation
```bash
az containerapp create \
--name stable-diffusion \
--resource-group MyRG \
--environment myenv \
--image myregistry.azurecr.io/stable-diffusion:latest \
--cpu 4 \
--memory 16Gi \
--gpu-type nvidia-a100 \
--gpu-count 1 \
--min-replicas 0 \
--max-replicas 10 \
--target-port 7860 \
--ingress external \
--scale-rule-name http-scaling \
--scale-rule-type http \
--scale-rule-http-concurrency 1
```
### Batch Processing Job
```bash
az containerapp job create \
--name batch-training-job \
--resource-group MyRG \
--environment myenv \
--trigger-type Manual \
--image myregistry.azurecr.io/training:latest \
--cpu 8 \
--memory 32Gi \
--gpu-type nvidia-a100 \
--gpu-count 2 \
--parallelism 1 \
--replica-timeout 7200 \
--replica-retry-limit 3 \
--env-vars \
DATASET_URL="https://mystorage.blob.core.windows.net/datasets/train.csv" \
MODEL_OUTPUT="https://mystorage.blob.core.windows.net/models/" \
EPOCHS="100"
# Execute job
az containerapp job start \
--name batch-training-job \
--resource-group MyRG
```
## Monitoring and Observability
### Application Insights Integration
```bash
az containerapp create \
--name myapp-monitored \
--resource-group MyRG \
--environment myenv \
--image myregistry.azurecr.io/myapp:latest \
--env-vars \
APPLICATIONINSIGHTS_CONNECTION_STRING=secretref:appinsights-connection
```
### Query Logs
```bash
# Stream logs
az containerapp logs show \
--name myapp-gpu \
--resource-group MyRG \
--follow
# Query with Log Analytics
az monitor log-analytics query \
--workspace <workspace-id> \
--analytics-query "ContainerAppConsoleLogs_CL | where ContainerAppName_s == 'myapp-gpu' | take 100"
```
### Metrics and Alerts
```bash
# Create metric alert for GPU usage
az monitor metrics alert create \
--name high-gpu-usage \
--resource-group MyRG \
--scopes $(az containerapp show -g MyRG -n myapp-gpu --query id -o tsv) \
--condition "avg Requests > 100" \
--window-size 5m \
--evaluation-frequency 1m \
--action <action-group-id>
```
## Security Best Practices
### Managed Identity
```bash
# Create with system-assigned identity
az containerapp create \
--name myapp-identity \
--resource-group MyRG \
--environment myenv \
--system-assigned \
--image myregistry.azurecr.io/myapp:latest
# Get identity principal ID
IDENTITY_ID=$(az containerapp show -g MyRG -n myapp-identity --query identity.principalId -o tsv)
# Assign role to access Key Vault
az role assignment create \
--assignee $IDENTITY_ID \
--role "Key Vault Secrets User" \
--scope /subscriptions/<sub-id>/resourceGroups/MyRG/providers/Microsoft.KeyVault/vaults/mykeyvault
# Use user-assigned identity
az identity create --name myapp-identity --resource-group MyRG
IDENTITY_RESOURCE_ID=$(az identity show -g MyRG -n myapp-identity --query id -o tsv)
az containerapp create \
--name myapp-user-identity \
--resource-group MyRG \
--environment myenv \
--user-assigned $IDENTITY_RESOURCE_ID \
--image myregistry.azurecr.io/myapp:latest
```
### Secret Management
```bash
# Add secrets
az containerapp secret set \
--name myapp-gpu \
--resource-group MyRG \
--secrets \
huggingface-token="<token>" \
api-key="<key>"
# Reference secrets in environment variables
az containerapp update \
--name myapp-gpu \
--resource-group MyRG \
--set-env-vars \
HF_TOKEN=secretref:huggingface-token \
API_KEY=secretref:api-key
```
## Cost Optimization
### Scale-to-Zero Configuration
```bash
az containerapp create \
--name myapp-scale-zero \
--resource-group MyRG \
--environment myenv \
--image myregistry.azurecr.io/myapp:latest \
--min-replicas 0 \
--max-replicas 10 \
--scale-rule-name http-scaling \
--scale-rule-type http \
--scale-rule-http-concurrency 10
```
**Cost savings**: Pay only when requests are being processed. GPU costs are per-second when active.
### Right-Sizing Resources
```bash
# Start with minimal resources
--cpu 2 --memory 4Gi --gpu-count 1
# Monitor and adjust based on actual usage
az monitor metrics list \
--resource $(az containerapp show -g MyRG -n myapp-gpu --query id -o tsv) \
--metric "CpuPercentage,MemoryPercentage"
```
### Use Spot/Preemptible GPUs (Future Feature)
When available, configure spot instances for non-critical workloads to save up to 80% on GPU costs.
## Troubleshooting
### Check Revision Status
```bash
az containerapp revision list \
--name myapp-gpu \
--resource-group MyRG \
--output table
```
### View Revision Details
```bash
az containerapp revision show \
--name <revision-name> \
--app myapp-gpu \
--resource-group MyRG
```
### Restart Container App
```bash
az containerapp update \
--name myapp-gpu \
--resource-group MyRG \
--force-restart
```
### GPU Not Available
If GPU is not provisioning:
1. Check region availability: Not all regions support GPU
2. Verify quota: Request quota increase if needed
3. Check workload profile: Ensure GPU workload profile is created
## Best Practices
✓ Use scale-to-zero for intermittent workloads
✓ Implement health probes (liveness and readiness)
✓ Use managed identities for authentication
✓ Store secrets in Azure Key Vault
✓ Enable Dapr for microservices patterns
✓ Configure appropriate scaling rules
✓ Monitor GPU utilization and adjust resources
✓ Use Container Apps jobs for batch processing
✓ Implement retry logic for transient failures
✓ Use Application Insights for observability
## References
- [Container Apps GPU Documentation](https://learn.microsoft.com/en-us/azure/container-apps/gpu-support)
- [Dapr Integration](https://learn.microsoft.com/en-us/azure/container-apps/dapr-overview)
- [Scaling Rules](https://learn.microsoft.com/en-us/azure/container-apps/scale-app)
- [Build 2025 Announcements](https://azure.microsoft.com/en-us/blog/container-apps-build-2025/)
Azure Container Apps with GPU support provides the ultimate serverless platform for AI/ML workloads!