Files
gh-jezweb-claude-skills-ski…/references/models-guide.md
2025-11-30 08:25:12 +08:00

7.6 KiB

OpenAI Models Guide

Last Updated: 2025-10-25

This guide provides a comprehensive comparison of OpenAI's language models to help you choose the right model for your use case.


GPT-5 Series (Released August 2025)

gpt-5

Status: Latest flagship model Best for: Complex reasoning, advanced problem-solving, code generation

Key Features:

  • Advanced reasoning capabilities
  • Unique parameters: reasoning_effort, verbosity
  • Best-in-class performance on complex tasks

Limitations:

  • No temperature support
  • No top_p support
  • No logprobs support
  • CoT (Chain of Thought) does NOT persist between turns

When to use:

  • Complex mathematical problems
  • Advanced code generation
  • Logic puzzles and reasoning tasks
  • Multi-step problem solving

Cost: Highest pricing tier


gpt-5-mini

Status: Cost-effective GPT-5 variant Best for: Balanced performance and cost

Key Features:

  • Same parameter support as gpt-5 (reasoning_effort, verbosity)
  • Better than GPT-4 Turbo performance
  • Significantly cheaper than gpt-5

When to use:

  • Most production applications
  • When you need GPT-5 features but not maximum performance
  • High-volume use cases where cost matters

Cost: Mid-tier pricing


gpt-5-nano

Status: Smallest GPT-5 variant Best for: Simple tasks, high-volume processing

Key Features:

  • Fastest response times
  • Lowest cost in GPT-5 series
  • Still supports GPT-5 unique parameters

When to use:

  • Simple text generation
  • High-volume batch processing
  • Real-time streaming applications
  • Cost-sensitive deployments

Cost: Low-tier pricing


GPT-4o Series

gpt-4o

Status: Multimodal flagship (pre-GPT-5) Best for: Vision tasks, multimodal applications

Key Features:

  • Vision support (image understanding)
  • Temperature control
  • Top-p sampling
  • Function calling
  • Structured outputs

Limitations:

  • No reasoning_effort parameter
  • No verbosity parameter

When to use:

  • Image understanding and analysis
  • OCR / text extraction from images
  • Visual question answering
  • When you need temperature/top_p control
  • Multimodal applications

Cost: High-tier pricing (cheaper than gpt-5)


gpt-4-turbo

Status: Fast GPT-4 variant Best for: When you need GPT-4 speed

Key Features:

  • Faster than base GPT-4
  • Full parameter support (temperature, top_p, logprobs)
  • Good balance of quality and speed

When to use:

  • When GPT-4 quality is needed with faster responses
  • Legacy applications requiring specific parameters
  • When vision is not required

Cost: Mid-tier pricing


Comparison Table

Feature GPT-5 GPT-5-mini GPT-5-nano GPT-4o GPT-4 Turbo
Reasoning Best Excellent Good Excellent Excellent
Speed Medium Medium Fastest Medium Fast
Cost Highest Mid Lowest High Mid
reasoning_effort
verbosity
temperature
top_p
Vision
Function calling
Structured outputs
Max output tokens 16,384 16,384 16,384 16,384 16,384

Selection Guide

Use GPT-5 when:

  • You need the best reasoning performance
  • Complex mathematical or logical problems
  • Advanced code generation
  • Multi-step problem solving
  • Cost is not the primary concern

Use GPT-5-mini when:

  • You want GPT-5 features at lower cost
  • Production applications with high volume
  • Good reasoning performance is needed
  • Balance of quality and cost matters

Use GPT-5-nano when:

  • Simple text generation tasks
  • High-volume batch processing
  • Real-time streaming applications
  • Cost optimization is critical
  • Complex reasoning is not required

Use GPT-4o when:

  • Vision / image understanding is required
  • You need temperature/top_p control
  • Multimodal applications
  • OCR and visual analysis
  • Pure text tasks (use GPT-5 series)

Use GPT-4 Turbo when:

  • Legacy application compatibility
  • You need specific parameters not in GPT-5
  • Fast responses without vision
  • Not recommended for new applications (use GPT-5 or GPT-4o)

Cost Optimization Strategies

1. Model Cascading

Start with cheaper models and escalate only when needed:

gpt-5-nano (try first) → gpt-5-mini → gpt-5 (if needed)

2. Task-Specific Model Selection

  • Simple: Use gpt-5-nano
  • Medium complexity: Use gpt-5-mini
  • Complex reasoning: Use gpt-5
  • Vision tasks: Use gpt-4o

3. Hybrid Approach

  • Use embeddings (cheap) for retrieval
  • Use gpt-5-mini for generation
  • Use gpt-5 only for critical decisions

4. Batch Processing

  • Use cheaper models for bulk operations
  • Reserve expensive models for user-facing requests

Parameter Guide

GPT-5 Unique Parameters

reasoning_effort: Controls reasoning depth

  • "minimal": Quick responses
  • "low": Basic reasoning
  • "medium": Balanced (default)
  • "high": Deep reasoning for complex problems

verbosity: Controls output length

  • "low": Concise responses
  • "medium": Balanced detail (default)
  • "high": Verbose, detailed responses

GPT-4o/GPT-4 Turbo Parameters

temperature: Controls randomness (0-2)

  • 0: Deterministic, focused
  • 1: Balanced creativity (default)
  • 2: Maximum creativity

top_p: Nucleus sampling (0-1)

  • Lower values: More focused
  • Higher values: More diverse

logprobs: Get token probabilities

  • Useful for debugging and analysis

Common Patterns

Pattern 1: Automatic Model Selection

function selectModel(taskComplexity: 'simple' | 'medium' | 'complex') {
  switch (taskComplexity) {
    case 'simple':
      return 'gpt-5-nano';
    case 'medium':
      return 'gpt-5-mini';
    case 'complex':
      return 'gpt-5';
  }
}

Pattern 2: Fallback Chain

async function completionWithFallback(prompt: string) {
  const models = ['gpt-5-nano', 'gpt-5-mini', 'gpt-5'];

  for (const model of models) {
    try {
      const result = await openai.chat.completions.create({
        model,
        messages: [{ role: 'user', content: prompt }],
      });

      // Validate quality
      if (isGoodEnough(result)) {
        return result;
      }
    } catch (error) {
      continue;
    }
  }

  throw new Error('All models failed');
}

Pattern 3: Vision + Text Hybrid

// Use gpt-4o for image analysis
const imageAnalysis = await openai.chat.completions.create({
  model: 'gpt-4o',
  messages: [
    {
      role: 'user',
      content: [
        { type: 'text', text: 'Describe this image' },
        { type: 'image_url', image_url: { url: imageUrl } },
      ],
    },
  ],
});

// Use gpt-5 for reasoning based on analysis
const reasoning = await openai.chat.completions.create({
  model: 'gpt-5',
  messages: [
    { role: 'system', content: `Image analysis: ${imageAnalysis.choices[0].message.content}` },
    { role: 'user', content: 'What does this imply about...' },
  ],
});

Official Documentation


Summary: Choose the right model based on your specific needs. GPT-5 series for reasoning, GPT-4o for vision, and optimize costs by selecting the smallest model that meets your requirements.