# OpenAI Models Guide **Last Updated**: 2025-10-25 This guide provides a comprehensive comparison of OpenAI's language models to help you choose the right model for your use case. --- ## GPT-5 Series (Released August 2025) ### gpt-5 **Status**: Latest flagship model **Best for**: Complex reasoning, advanced problem-solving, code generation **Key Features**: - Advanced reasoning capabilities - Unique parameters: `reasoning_effort`, `verbosity` - Best-in-class performance on complex tasks **Limitations**: - ❌ No `temperature` support - ❌ No `top_p` support - ❌ No `logprobs` support - ❌ CoT (Chain of Thought) does NOT persist between turns **When to use**: - Complex mathematical problems - Advanced code generation - Logic puzzles and reasoning tasks - Multi-step problem solving **Cost**: Highest pricing tier --- ### gpt-5-mini **Status**: Cost-effective GPT-5 variant **Best for**: Balanced performance and cost **Key Features**: - Same parameter support as gpt-5 (`reasoning_effort`, `verbosity`) - Better than GPT-4 Turbo performance - Significantly cheaper than gpt-5 **When to use**: - Most production applications - When you need GPT-5 features but not maximum performance - High-volume use cases where cost matters **Cost**: Mid-tier pricing --- ### gpt-5-nano **Status**: Smallest GPT-5 variant **Best for**: Simple tasks, high-volume processing **Key Features**: - Fastest response times - Lowest cost in GPT-5 series - Still supports GPT-5 unique parameters **When to use**: - Simple text generation - High-volume batch processing - Real-time streaming applications - Cost-sensitive deployments **Cost**: Low-tier pricing --- ## GPT-4o Series ### gpt-4o **Status**: Multimodal flagship (pre-GPT-5) **Best for**: Vision tasks, multimodal applications **Key Features**: - ✅ Vision support (image understanding) - ✅ Temperature control - ✅ Top-p sampling - ✅ Function calling - ✅ Structured outputs **Limitations**: - ❌ No `reasoning_effort` parameter - ❌ No `verbosity` parameter **When to use**: - Image understanding and analysis - OCR / text extraction from images - Visual question answering - When you need temperature/top_p control - Multimodal applications **Cost**: High-tier pricing (cheaper than gpt-5) --- ### gpt-4-turbo **Status**: Fast GPT-4 variant **Best for**: When you need GPT-4 speed **Key Features**: - Faster than base GPT-4 - Full parameter support (temperature, top_p, logprobs) - Good balance of quality and speed **When to use**: - When GPT-4 quality is needed with faster responses - Legacy applications requiring specific parameters - When vision is not required **Cost**: Mid-tier pricing --- ## Comparison Table | Feature | GPT-5 | GPT-5-mini | GPT-5-nano | GPT-4o | GPT-4 Turbo | |---------|-------|------------|------------|--------|-------------| | **Reasoning** | Best | Excellent | Good | Excellent | Excellent | | **Speed** | Medium | Medium | Fastest | Medium | Fast | | **Cost** | Highest | Mid | Lowest | High | Mid | | **reasoning_effort** | ✅ | ✅ | ✅ | ❌ | ❌ | | **verbosity** | ✅ | ✅ | ✅ | ❌ | ❌ | | **temperature** | ❌ | ❌ | ❌ | ✅ | ✅ | | **top_p** | ❌ | ❌ | ❌ | ✅ | ✅ | | **Vision** | ❌ | ❌ | ❌ | ✅ | ❌ | | **Function calling** | ✅ | ✅ | ✅ | ✅ | ✅ | | **Structured outputs** | ✅ | ✅ | ✅ | ✅ | ✅ | | **Max output tokens** | 16,384 | 16,384 | 16,384 | 16,384 | 16,384 | --- ## Selection Guide ### Use GPT-5 when: - ✅ You need the best reasoning performance - ✅ Complex mathematical or logical problems - ✅ Advanced code generation - ✅ Multi-step problem solving - ❌ Cost is not the primary concern ### Use GPT-5-mini when: - ✅ You want GPT-5 features at lower cost - ✅ Production applications with high volume - ✅ Good reasoning performance is needed - ✅ Balance of quality and cost matters ### Use GPT-5-nano when: - ✅ Simple text generation tasks - ✅ High-volume batch processing - ✅ Real-time streaming applications - ✅ Cost optimization is critical - ❌ Complex reasoning is not required ### Use GPT-4o when: - ✅ Vision / image understanding is required - ✅ You need temperature/top_p control - ✅ Multimodal applications - ✅ OCR and visual analysis - ❌ Pure text tasks (use GPT-5 series) ### Use GPT-4 Turbo when: - ✅ Legacy application compatibility - ✅ You need specific parameters not in GPT-5 - ✅ Fast responses without vision - ❌ Not recommended for new applications (use GPT-5 or GPT-4o) --- ## Cost Optimization Strategies ### 1. Model Cascading Start with cheaper models and escalate only when needed: ``` gpt-5-nano (try first) → gpt-5-mini → gpt-5 (if needed) ``` ### 2. Task-Specific Model Selection - **Simple**: Use gpt-5-nano - **Medium complexity**: Use gpt-5-mini - **Complex reasoning**: Use gpt-5 - **Vision tasks**: Use gpt-4o ### 3. Hybrid Approach - Use embeddings (cheap) for retrieval - Use gpt-5-mini for generation - Use gpt-5 only for critical decisions ### 4. Batch Processing - Use cheaper models for bulk operations - Reserve expensive models for user-facing requests --- ## Parameter Guide ### GPT-5 Unique Parameters **reasoning_effort**: Controls reasoning depth - "minimal": Quick responses - "low": Basic reasoning - "medium": Balanced (default) - "high": Deep reasoning for complex problems **verbosity**: Controls output length - "low": Concise responses - "medium": Balanced detail (default) - "high": Verbose, detailed responses ### GPT-4o/GPT-4 Turbo Parameters **temperature**: Controls randomness (0-2) - 0: Deterministic, focused - 1: Balanced creativity (default) - 2: Maximum creativity **top_p**: Nucleus sampling (0-1) - Lower values: More focused - Higher values: More diverse **logprobs**: Get token probabilities - Useful for debugging and analysis --- ## Common Patterns ### Pattern 1: Automatic Model Selection ```typescript function selectModel(taskComplexity: 'simple' | 'medium' | 'complex') { switch (taskComplexity) { case 'simple': return 'gpt-5-nano'; case 'medium': return 'gpt-5-mini'; case 'complex': return 'gpt-5'; } } ``` ### Pattern 2: Fallback Chain ```typescript async function completionWithFallback(prompt: string) { const models = ['gpt-5-nano', 'gpt-5-mini', 'gpt-5']; for (const model of models) { try { const result = await openai.chat.completions.create({ model, messages: [{ role: 'user', content: prompt }], }); // Validate quality if (isGoodEnough(result)) { return result; } } catch (error) { continue; } } throw new Error('All models failed'); } ``` ### Pattern 3: Vision + Text Hybrid ```typescript // Use gpt-4o for image analysis const imageAnalysis = await openai.chat.completions.create({ model: 'gpt-4o', messages: [ { role: 'user', content: [ { type: 'text', text: 'Describe this image' }, { type: 'image_url', image_url: { url: imageUrl } }, ], }, ], }); // Use gpt-5 for reasoning based on analysis const reasoning = await openai.chat.completions.create({ model: 'gpt-5', messages: [ { role: 'system', content: `Image analysis: ${imageAnalysis.choices[0].message.content}` }, { role: 'user', content: 'What does this imply about...' }, ], }); ``` --- ## Official Documentation - **GPT-5 Guide**: https://platform.openai.com/docs/guides/latest-model - **Model Pricing**: https://openai.com/pricing - **Model Comparison**: https://platform.openai.com/docs/models --- **Summary**: Choose the right model based on your specific needs. GPT-5 series for reasoning, GPT-4o for vision, and optimize costs by selecting the smallest model that meets your requirements.