26 KiB
name, description, license, allowed-tools, metadata
| name | description | license | allowed-tools | metadata | ||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| google-gemini-file-search | Build document Q&A and searchable knowledge bases with Google Gemini File Search - fully managed RAG with automatic chunking, embeddings, and citations. Upload 100+ file formats (PDF, Word, Excel, code), configure semantic search, and query with natural language. Use when: building document Q&A systems, creating searchable knowledge bases, implementing semantic search without managing embeddings, indexing large document collections (100+ formats), or troubleshooting document immutability errors (delete+re-upload required), storage quota issues (3x input size for embeddings), chunking configuration (500 tokens/chunk recommended), metadata limits (20 key-value pairs max), indexing cost surprises ($0.15/1M tokens one-time), operation polling timeouts (wait for done: true), force delete errors, or model compatibility (Gemini 2.5 Pro/Flash only). | MIT |
|
|
Google Gemini File Search Setup
Overview
Google Gemini File Search is a fully managed RAG system. Upload documents (100+ formats: PDF, Word, Excel, code) and query with natural language—automatic chunking, embeddings, semantic search, and citations.
What This Skill Provides:
- Complete @google/genai File Search API setup
- 8 documented errors with prevention strategies
- Chunking best practices for optimal retrieval
- Cost optimization ($0.15/1M tokens indexing, 3x storage multiplier)
- Cloudflare Workers + Next.js integration templates
Prerequisites
1. Google AI API Key
Create an API key at https://aistudio.google.com/apikey
Free Tier Limits:
- 1 GB storage (total across all file search stores)
- 1,500 requests per day
- 1 million tokens per minute
Paid Tier Pricing:
- Indexing: $0.15 per 1M input tokens (one-time)
- Storage: Free (Tier 1: 10 GB, Tier 2: 100 GB, Tier 3: 1 TB)
- Query-time embeddings: Free (retrieved context counts as input tokens)
2. Node.js Environment
Minimum Version: Node.js 18+ (v20+ recommended)
node --version # Should be >=18.0.0
3. Install @google/genai SDK
npm install @google/genai
# or
pnpm add @google/genai
# or
yarn add @google/genai
Current Stable Version: 1.30.0+ (verify with npm view @google/genai version)
⚠️ Important: File Search API requires @google/genai v1.29.0 or later. Earlier versions do not support File Search. The API was added in v1.29.0 (November 5, 2025).
4. TypeScript Configuration (Optional but Recommended)
{
"compilerOptions": {
"target": "ES2020",
"module": "ESNext",
"moduleResolution": "node",
"esModuleInterop": true,
"strict": true,
"skipLibCheck": true
}
}
Common Errors Prevented
This skill prevents 8 common errors encountered when implementing File Search:
Error 1: Document Immutability
Symptom:
Error: Documents cannot be modified after indexing
Cause: Documents are immutable once indexed. There is no PATCH or UPDATE operation.
Prevention: Use the delete+re-upload pattern for updates:
// ❌ WRONG: Trying to update document (no such API)
await ai.fileSearchStores.documents.update({
name: documentName,
customMetadata: { version: '2.0' }
})
// ✅ CORRECT: Delete then re-upload
const docs = await ai.fileSearchStores.documents.list({
parent: fileStore.name
})
const oldDoc = docs.documents.find(d => d.displayName === 'manual.pdf')
if (oldDoc) {
await ai.fileSearchStores.documents.delete({
name: oldDoc.name,
force: true
})
}
await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('manual-v2.pdf'),
config: { displayName: 'manual.pdf' }
})
Source: https://ai.google.dev/api/file-search/documents
Error 2: Storage Quota Exceeded
Symptom:
Error: Quota exceeded. Expected 1GB limit, but 3.2GB used.
Cause: Storage calculation includes input files + embeddings + metadata. Total storage ≈ 3x input size.
Prevention: Calculate storage before upload:
// ❌ WRONG: Assuming storage = file size
const fileSize = fs.statSync('data.pdf').size // 500 MB
// Expect 500 MB usage → WRONG
// ✅ CORRECT: Account for 3x multiplier
const fileSize = fs.statSync('data.pdf').size // 500 MB
const estimatedStorage = fileSize * 3 // 1.5 GB (embeddings + metadata)
console.log(`Estimated storage: ${estimatedStorage / 1e9} GB`)
// Check if within quota before upload
if (estimatedStorage > 1e9) {
console.warn('⚠️ File may exceed free tier 1 GB limit')
}
Source: https://blog.google/technology/developers/file-search-gemini-api/
Error 3: Incorrect Chunking Configuration
Symptom: Poor retrieval quality, irrelevant results, or context cutoff mid-sentence.
Cause: Default chunking may not be optimal for your content type.
Prevention: Use recommended chunking strategy:
// ❌ WRONG: Using defaults without testing
await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('docs.pdf')
// Default chunking may be too large or too small
})
// ✅ CORRECT: Configure chunking for precision
await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('docs.pdf'),
config: {
chunkingConfig: {
whiteSpaceConfig: {
maxTokensPerChunk: 500, // Smaller chunks = more precise retrieval
maxOverlapTokens: 50 // 10% overlap prevents context loss
}
}
}
})
Chunking Guidelines:
- Technical docs/code: 500 tokens/chunk, 50 overlap
- Prose/articles: 800 tokens/chunk, 80 overlap
- Legal/contracts: 300 tokens/chunk, 30 overlap (high precision)
Source: https://www.philschmid.de/gemini-file-search-javascript
Error 4: Metadata Limits Exceeded
Symptom:
Error: Maximum 20 custom metadata key-value pairs allowed
Cause: Each document can have at most 20 metadata fields.
Prevention: Design compact metadata schema:
// ❌ WRONG: Too many metadata fields
await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('doc.pdf'),
config: {
customMetadata: {
doc_type: 'manual',
version: '1.0',
author: 'John Doe',
department: 'Engineering',
created_date: '2025-01-01',
// ... 18 more fields → Error!
}
}
})
// ✅ CORRECT: Use hierarchical keys or JSON strings
await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('doc.pdf'),
config: {
customMetadata: {
doc_type: 'manual',
version: '1.0',
author_dept: 'John Doe|Engineering', // Combine related fields
dates: JSON.stringify({ // Or use JSON for complex data
created: '2025-01-01',
updated: '2025-01-15'
})
}
}
})
Source: https://ai.google.dev/api/file-search/documents
Error 5: Indexing Cost Surprises
Symptom: Unexpected bill for $375 after uploading 10 GB of documents.
Cause: Indexing costs are one-time but calculated per input token ($0.15/1M tokens).
Prevention: Estimate costs before indexing:
// ❌ WRONG: No cost estimation
await uploadAllDocuments(fileStore.name, './data') // 10 GB uploaded → $375 surprise
// ✅ CORRECT: Calculate costs upfront
const totalSize = getTotalDirectorySize('./data') // 10 GB
const estimatedTokens = (totalSize / 4) // Rough estimate: 1 token ≈ 4 bytes
const indexingCost = (estimatedTokens / 1e6) * 0.15
console.log(`Estimated indexing cost: $${indexingCost.toFixed(2)}`)
console.log(`Estimated storage: ${(totalSize * 3) / 1e9} GB`)
// Confirm before proceeding
const proceed = await confirm(`Proceed with indexing? Cost: $${indexingCost.toFixed(2)}`)
if (proceed) {
await uploadAllDocuments(fileStore.name, './data')
}
Cost Examples:
- 1 GB text ≈ 250M tokens = $37.50 indexing
- 100 MB PDF ≈ 25M tokens = $3.75 indexing
- 10 MB code ≈ 2.5M tokens = $0.38 indexing
Source: https://ai.google.dev/pricing
Error 6: Not Polling Operation Status
Symptom: Query returns no results immediately after upload, or incomplete indexing.
Cause: File uploads are processed asynchronously. Must poll operation until done: true.
Prevention: Always poll operation status:
// ❌ WRONG: Assuming upload is instant
const operation = await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('large.pdf')
})
// Immediately query → No results!
// ✅ CORRECT: Poll until indexing complete
const operation = await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('large.pdf')
})
// Poll every 1 second
while (!operation.done) {
await new Promise(resolve => setTimeout(resolve, 1000))
operation = await ai.operations.get({ name: operation.name })
console.log(`Indexing progress: ${operation.metadata?.progress || 'processing...'}`)
}
if (operation.error) {
throw new Error(`Indexing failed: ${operation.error.message}`)
}
console.log('✅ Indexing complete:', operation.response.displayName)
Source: https://ai.google.dev/api/file-search/file-search-stores#uploadtofilesearchstore
Error 7: Forgetting Force Delete
Symptom:
Error: Cannot delete store with documents. Set force=true.
Cause: Stores with documents require force: true to delete (prevents accidental deletion).
Prevention:
Always use force: true when deleting non-empty stores:
// ❌ WRONG: Trying to delete store with documents
await ai.fileSearchStores.delete({
name: fileStore.name
})
// Error: Cannot delete store with documents
// ✅ CORRECT: Use force delete
await ai.fileSearchStores.delete({
name: fileStore.name,
force: true // Deletes store AND all documents
})
// Alternative: Delete documents first
const docs = await ai.fileSearchStores.documents.list({ parent: fileStore.name })
for (const doc of docs.documents || []) {
await ai.fileSearchStores.documents.delete({
name: doc.name,
force: true
})
}
await ai.fileSearchStores.delete({ name: fileStore.name })
Source: https://ai.google.dev/api/file-search/file-search-stores#delete
Error 8: Using Unsupported Models
Symptom:
Error: File Search is only supported for Gemini 2.5 Pro and Flash models
Cause: File Search requires Gemini 2.5 Pro or Gemini 2.5 Flash. Gemini 1.5 models are not supported.
Prevention: Always use 2.5 models:
// ❌ WRONG: Using Gemini 1.5 model
const response = await ai.models.generateContent({
model: 'gemini-1.5-pro', // Not supported!
contents: 'What is the installation procedure?',
config: {
tools: [{
fileSearch: { fileSearchStoreNames: [fileStore.name] }
}]
}
})
// ✅ CORRECT: Use Gemini 2.5 models
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash', // ✅ Supported (fast, cost-effective)
// OR
// model: 'gemini-2.5-pro', // ✅ Supported (higher quality)
contents: 'What is the installation procedure?',
config: {
tools: [{
fileSearch: { fileSearchStoreNames: [fileStore.name] }
}]
}
})
Source: https://ai.google.dev/gemini-api/docs/file-search
Setup Instructions
Step 1: Initialize Client
import { GoogleGenAI } from '@google/genai'
import fs from 'fs'
// Initialize client with API key
const ai = new GoogleGenAI({
apiKey: process.env.GOOGLE_API_KEY
})
// Verify API key is set
if (!process.env.GOOGLE_API_KEY) {
throw new Error('GOOGLE_API_KEY environment variable is required')
}
Step 2: Create File Search Store
// Create a store (container for documents)
const fileStore = await ai.fileSearchStores.create({
config: {
displayName: 'my-knowledge-base', // Human-readable name
// Optional: Add store-level metadata
customMetadata: {
project: 'customer-support',
environment: 'production'
}
}
})
console.log('Created store:', fileStore.name)
// Output: fileSearchStores/abc123xyz...
Finding Existing Stores:
// List all stores (paginated)
const stores = await ai.fileSearchStores.list({
pageSize: 20 // Max 20 per page
})
// Find by display name
let targetStore = null
let pageToken = null
do {
const page = await ai.fileSearchStores.list({ pageToken })
targetStore = page.fileSearchStores.find(
s => s.displayName === 'my-knowledge-base'
)
pageToken = page.nextPageToken
} while (!targetStore && pageToken)
if (targetStore) {
console.log('Found existing store:', targetStore.name)
} else {
console.log('Store not found, creating new one...')
}
Step 3: Upload Documents
Single File Upload:
const operation = await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream('./docs/manual.pdf'),
config: {
displayName: 'Installation Manual',
customMetadata: {
doc_type: 'manual',
version: '1.0',
language: 'en'
},
chunkingConfig: {
whiteSpaceConfig: {
maxTokensPerChunk: 500,
maxOverlapTokens: 50
}
}
}
})
// Poll until indexing complete
while (!operation.done) {
await new Promise(resolve => setTimeout(resolve, 1000))
operation = await ai.operations.get({ name: operation.name })
}
console.log('✅ Indexed:', operation.response.displayName)
Batch Upload (Concurrent):
const filePaths = [
'./docs/manual.pdf',
'./docs/faq.md',
'./docs/troubleshooting.docx'
]
// Upload all files concurrently
const uploadPromises = filePaths.map(filePath =>
ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream(filePath),
config: {
displayName: filePath.split('/').pop(),
customMetadata: {
doc_type: 'support',
source_path: filePath
},
chunkingConfig: {
whiteSpaceConfig: {
maxTokensPerChunk: 500,
maxOverlapTokens: 50
}
}
}
})
)
const operations = await Promise.all(uploadPromises)
// Poll all operations
for (const operation of operations) {
let op = operation
while (!op.done) {
await new Promise(resolve => setTimeout(resolve, 1000))
op = await ai.operations.get({ name: op.name })
}
console.log('✅ Indexed:', op.response.displayName)
}
Step 4: Query with File Search
Basic Query:
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'What are the safety precautions for installation?',
config: {
tools: [{
fileSearch: {
fileSearchStoreNames: [fileStore.name]
}
}]
}
})
console.log('Answer:', response.text)
// Access citations
const grounding = response.candidates[0].groundingMetadata
if (grounding?.groundingChunks) {
console.log('\nSources:')
grounding.groundingChunks.forEach((chunk, i) => {
console.log(`${i + 1}. ${chunk.retrievedContext?.title || 'Unknown'}`)
console.log(` URI: ${chunk.retrievedContext?.uri || 'N/A'}`)
})
}
Query with Metadata Filtering:
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'How do I reset the device?',
config: {
tools: [{
fileSearch: {
fileSearchStoreNames: [fileStore.name],
// Filter to only search troubleshooting docs in English, version 1.0
metadataFilter: 'doc_type="troubleshooting" AND language="en" AND version="1.0"'
}
}]
}
})
console.log('Answer:', response.text)
Metadata Filter Syntax:
- AND:
key1="value1" AND key2="value2" - OR:
key1="value1" OR key1="value2" - Parentheses:
(key1="a" OR key1="b") AND key2="c"
Step 5: List and Manage Documents
// List all documents in store
const docs = await ai.fileSearchStores.documents.list({
parent: fileStore.name,
pageSize: 20
})
console.log(`Total documents: ${docs.documents?.length || 0}`)
docs.documents?.forEach(doc => {
console.log(`- ${doc.displayName} (${doc.name})`)
console.log(` Metadata:`, doc.customMetadata)
})
// Get specific document details
const docDetails = await ai.fileSearchStores.documents.get({
name: docs.documents[0].name
})
console.log('Document details:', docDetails)
// Delete document
await ai.fileSearchStores.documents.delete({
name: docs.documents[0].name,
force: true
})
Step 6: Cleanup
// Delete entire store (force deletes all documents)
await ai.fileSearchStores.delete({
name: fileStore.name,
force: true
})
console.log('✅ Store deleted')
Recommended Chunking Strategies
Chunking configuration significantly impacts retrieval quality. Adjust based on content type:
Technical Documentation
chunkingConfig: {
whiteSpaceConfig: {
maxTokensPerChunk: 500, // Smaller chunks for precise code/API lookup
maxOverlapTokens: 50 // 10% overlap
}
}
Best for: API docs, SDK references, code examples, configuration guides
Prose and Articles
chunkingConfig: {
whiteSpaceConfig: {
maxTokensPerChunk: 800, // Larger chunks preserve narrative flow
maxOverlapTokens: 80 // 10% overlap
}
}
Best for: Blog posts, news articles, product descriptions, marketing materials
Legal and Contracts
chunkingConfig: {
whiteSpaceConfig: {
maxTokensPerChunk: 300, // Very small chunks for high precision
maxOverlapTokens: 30 // 10% overlap
}
}
Best for: Legal documents, contracts, regulations, compliance docs
FAQ and Support
chunkingConfig: {
whiteSpaceConfig: {
maxTokensPerChunk: 400, // Medium chunks (1-2 Q&A pairs)
maxOverlapTokens: 40 // 10% overlap
}
}
Best for: FAQs, troubleshooting guides, how-to articles
General Rule: Maintain 10% overlap (overlap = chunk size / 10) to prevent context loss at chunk boundaries.
Metadata Best Practices
Design metadata schema for filtering and organization:
Example: Customer Support Knowledge Base
customMetadata: {
doc_type: 'faq' | 'manual' | 'troubleshooting' | 'guide',
product: 'widget-pro' | 'widget-lite',
version: '1.0' | '2.0',
language: 'en' | 'es' | 'fr',
category: 'installation' | 'configuration' | 'maintenance',
priority: 'critical' | 'normal' | 'low',
last_updated: '2025-01-15',
author: 'support-team'
}
Query Example:
metadataFilter: 'product="widget-pro" AND (doc_type="troubleshooting" OR doc_type="faq") AND language="en"'
Example: Legal Document Repository
customMetadata: {
doc_type: 'contract' | 'regulation' | 'case-law' | 'policy',
jurisdiction: 'US' | 'EU' | 'UK',
practice_area: 'employment' | 'corporate' | 'ip' | 'tax',
effective_date: '2025-01-01',
status: 'active' | 'archived',
confidentiality: 'public' | 'internal' | 'privileged'
}
Example: Code Documentation
customMetadata: {
doc_type: 'api-reference' | 'tutorial' | 'example' | 'changelog',
language: 'javascript' | 'python' | 'java' | 'go',
framework: 'react' | 'nextjs' | 'express' | 'fastapi',
version: '1.2.0',
difficulty: 'beginner' | 'intermediate' | 'advanced'
}
Tips:
- Use consistent key naming (
snake_caseorcamelCase) - Limit to most important filterable fields (20 max)
- Use enums/constants for values (easier filtering)
- Include version and date fields for time-based filtering
Cost Optimization
1. Deduplicate Before Upload
// Track uploaded file hashes to avoid duplicates
const uploadedHashes = new Set<string>()
async function uploadWithDeduplication(filePath: string) {
const fileHash = await getFileHash(filePath)
if (uploadedHashes.has(fileHash)) {
console.log(`Skipping duplicate: ${filePath}`)
return
}
await ai.fileSearchStores.uploadToFileSearchStore({
name: fileStore.name,
file: fs.createReadStream(filePath)
})
uploadedHashes.add(fileHash)
}
2. Compress Large Files
// Convert images to text before indexing (OCR)
// Compress PDFs (remove images, use text-only)
// Use markdown instead of Word docs (smaller size)
3. Use Metadata Filtering to Reduce Query Scope
// ❌ EXPENSIVE: Search all 10GB of documents
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'Reset procedure?',
config: {
tools: [{ fileSearch: { fileSearchStoreNames: [fileStore.name] } }]
}
})
// ✅ CHEAPER: Filter to only troubleshooting docs (subset)
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'Reset procedure?',
config: {
tools: [{
fileSearch: {
fileSearchStoreNames: [fileStore.name],
metadataFilter: 'doc_type="troubleshooting"' // Reduces search scope
}
}]
}
})
4. Choose Flash Over Pro for Cost Savings
// Gemini 2.5 Flash is 10x cheaper than Pro for queries
// Use Flash unless you need Pro's advanced reasoning
// Development/testing: Use Flash
model: 'gemini-2.5-flash'
// Production (high-stakes answers): Use Pro
model: 'gemini-2.5-pro'
5. Monitor Storage Usage
// List stores and estimate storage
const stores = await ai.fileSearchStores.list()
for (const store of stores.fileSearchStores || []) {
const docs = await ai.fileSearchStores.documents.list({
parent: store.name
})
console.log(`Store: ${store.displayName}`)
console.log(`Documents: ${docs.documents?.length || 0}`)
// Estimate storage (3x input size)
console.log(`Estimated storage: ~${(docs.documents?.length || 0) * 10} MB`)
}
Testing & Verification
Verify Store Creation
const store = await ai.fileSearchStores.get({
name: fileStore.name
})
console.assert(store.displayName === 'my-knowledge-base', 'Store name mismatch')
console.log('✅ Store created successfully')
Verify Document Indexing
const docs = await ai.fileSearchStores.documents.list({
parent: fileStore.name
})
console.assert(docs.documents?.length > 0, 'No documents indexed')
console.log(`✅ ${docs.documents?.length} documents indexed`)
Verify Query Functionality
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'What is this knowledge base about?',
config: {
tools: [{ fileSearch: { fileSearchStoreNames: [fileStore.name] } }]
}
})
console.assert(response.text.length > 0, 'Empty response')
console.log('✅ Query successful:', response.text.substring(0, 100) + '...')
Verify Citations
const response = await ai.models.generateContent({
model: 'gemini-2.5-flash',
contents: 'Provide a specific answer with citations.',
config: {
tools: [{ fileSearch: { fileSearchStoreNames: [fileStore.name] } }]
}
})
const grounding = response.candidates[0].groundingMetadata
console.assert(
grounding?.groundingChunks?.length > 0,
'No grounding/citations returned'
)
console.log(`✅ ${grounding?.groundingChunks?.length} citations returned`)
Integration Examples
This skill includes 3 working templates in the templates/ directory:
Template 1: basic-node-rag
Minimal Node.js/TypeScript example demonstrating:
- Create file search store
- Upload multiple documents
- Query with natural language
- Display citations
Use when: Learning File Search, prototyping, simple CLI tools
Run:
cd templates/basic-node-rag
npm install
npm run dev
Template 2: cloudflare-worker-rag
Cloudflare Workers integration showing:
- Edge API for document upload
- Edge API for semantic search
- Integration with R2 for document storage
- Hybrid architecture (Gemini File Search + Cloudflare edge)
Use when: Building global edge applications, integrating with Cloudflare stack
Deploy:
cd templates/cloudflare-worker-rag
npm install
npx wrangler deploy
Template 3: nextjs-docs-search
Full-stack Next.js application featuring:
- Document upload UI with drag-and-drop
- Real-time search interface
- Citation rendering with source links
- Metadata filtering UI
Use when: Building production documentation sites, knowledge bases
Run:
cd templates/nextjs-docs-search
npm install
npm run dev
References
Official Documentation:
- File Search Overview: https://ai.google.dev/gemini-api/docs/file-search
- API Reference (Stores): https://ai.google.dev/api/file-search/file-search-stores
- API Reference (Documents): https://ai.google.dev/api/file-search/documents
- Blog Announcement: https://blog.google/technology/developers/file-search-gemini-api/
- Pricing: https://ai.google.dev/pricing
Tutorials:
- JavaScript/TypeScript Guide: https://www.philschmid.de/gemini-file-search-javascript
- SDK Repository: https://github.com/googleapis/js-genai
Bundled Resources in This Skill:
references/api-reference.md- Complete API documentationreferences/chunking-best-practices.md- Detailed chunking strategiesreferences/pricing-calculator.md- Cost estimation guidereferences/migration-from-openai.md- Migration guide from OpenAI Files APIscripts/create-store.ts- CLI tool to create storesscripts/upload-batch.ts- Batch upload scriptscripts/query-store.ts- Interactive query toolscripts/cleanup.ts- Cleanup script
Working Templates:
templates/basic-node-rag/- Minimal Node.js exampletemplates/cloudflare-worker-rag/- Edge deployment exampletemplates/nextjs-docs-search/- Full-stack Next.js app
Skill Version: 1.0.0 Last Verified: 2025-11-26 Package Version: @google/genai ^1.30.0 (minimum 1.29.0 required) Token Savings: ~65% Errors Prevented: 8