377 lines
8.4 KiB
Markdown
377 lines
8.4 KiB
Markdown
---
|
|
name: create-agent
|
|
description: Create a production-ready Google Cloud agent using ADK and Agent Starter Pack with CI/CD, deployment, and testing infrastructure
|
|
model: sonnet
|
|
---
|
|
|
|
# Create Production-Ready Google Cloud Agent
|
|
|
|
Scaffold a complete agent project using Google's Agent Development Kit (ADK) and Agent Starter Pack with production-ready infrastructure.
|
|
|
|
## What This Does
|
|
|
|
1. **Choose Agent Template**: Select from 5 production templates
|
|
2. **Configure Deployment**: Select deployment target (Cloud Run, GKE, Agent Engine)
|
|
3. **Generate Project**: Create complete project structure with CI/CD
|
|
4. **Setup Instructions**: Provide step-by-step deployment guide
|
|
|
|
## Available Templates
|
|
|
|
### 1. adk_base (ReAct Agent)
|
|
**Best for**: General-purpose agents with tool use
|
|
**Includes**: Search, code execution, custom tools
|
|
**Use case**: Q&A agents, research assistants, task automation
|
|
|
|
### 2. agentic_rag (RAG Agent)
|
|
**Best for**: Document-based Q&A
|
|
**Includes**: Vertex AI Search, Vector Search integration
|
|
**Use case**: Knowledge bases, documentation agents, customer support
|
|
|
|
### 3. langgraph_base_react (LangGraph)
|
|
**Best for**: Complex workflows with state management
|
|
**Includes**: LangGraph orchestration, custom nodes
|
|
**Use case**: Multi-step processes, conditional logic, state tracking
|
|
|
|
### 4. crewai_coding_crew (Multi-Agent)
|
|
**Best for**: Collaborative multi-agent systems
|
|
**Includes**: Specialized agents, role-based coordination
|
|
**Use case**: Software development, research teams, content creation
|
|
|
|
### 5. adk_live (Multimodal RAG)
|
|
**Best for**: Audio/video/text processing
|
|
**Includes**: Multimodal understanding, live streaming
|
|
**Use case**: Video analysis, audio transcription, media processing
|
|
|
|
## Deployment Targets
|
|
|
|
### Cloud Run (Serverless)
|
|
**Pros:**
|
|
- Automatic scaling 0→N
|
|
- Pay-per-use pricing
|
|
- Fast deployment
|
|
- Custom domains
|
|
|
|
**Cons:**
|
|
- 60-minute timeout
|
|
- Limited memory (8GB max)
|
|
|
|
**Best for:** Web-facing agents, APIs, low-traffic services
|
|
|
|
### Agent Engine (Managed)
|
|
**Pros:**
|
|
- Fully managed runtime
|
|
- Built-in observability
|
|
- Auto-scaling
|
|
- Integrated with Vertex AI
|
|
|
|
**Cons:**
|
|
- Vertex AI pricing
|
|
- Less customization
|
|
|
|
**Best for:** Production agents, high-scale deployment
|
|
|
|
### GKE (Kubernetes)
|
|
**Pros:**
|
|
- Full control
|
|
- Advanced networking
|
|
- Resource management
|
|
- Multi-cluster
|
|
|
|
**Cons:**
|
|
- Higher complexity
|
|
- Cluster management overhead
|
|
|
|
**Best for:** Complex multi-agent systems, enterprise deployment
|
|
|
|
## Usage
|
|
|
|
```bash
|
|
/create-agent
|
|
```
|
|
|
|
Then provide:
|
|
- Agent name
|
|
- Template choice
|
|
- Deployment target
|
|
- GCP project ID
|
|
- Region preference
|
|
|
|
## Example Workflow
|
|
|
|
**Input:**
|
|
```
|
|
Agent name: customer-support-agent
|
|
Template: agentic_rag
|
|
Deployment: cloud_run
|
|
Project: my-gcp-project
|
|
Region: us-central1
|
|
```
|
|
|
|
**Generated Structure:**
|
|
```
|
|
customer-support-agent/
|
|
├── src/
|
|
│ ├── agent.py # Main agent implementation
|
|
│ ├── tools/
|
|
│ │ ├── search_tool.py
|
|
│ │ └── custom_tools.py
|
|
│ ├── config.py # Configuration
|
|
│ └── prompts/
|
|
│ └── system_prompt.txt
|
|
├── deployment/
|
|
│ ├── Dockerfile
|
|
│ ├── cloudbuild.yaml
|
|
│ ├── cloud-run.yaml
|
|
│ └── terraform/
|
|
│ ├── main.tf
|
|
│ ├── variables.tf
|
|
│ └── outputs.tf
|
|
├── tests/
|
|
│ ├── unit/
|
|
│ │ ├── test_agent.py
|
|
│ │ └── test_tools.py
|
|
│ └── integration/
|
|
│ └── test_e2e.py
|
|
├── .github/workflows/
|
|
│ ├── test.yaml # CI testing
|
|
│ └── deploy.yaml # CD deployment
|
|
├── requirements.txt
|
|
├── pyproject.toml
|
|
├── README.md
|
|
└── .env.example
|
|
```
|
|
|
|
## Step-by-Step Deployment
|
|
|
|
### 1. Install Dependencies
|
|
```bash
|
|
cd customer-support-agent
|
|
python -m venv venv
|
|
source venv/bin/activate
|
|
pip install -r requirements.txt
|
|
```
|
|
|
|
### 2. Configure GCP
|
|
```bash
|
|
# Authenticate
|
|
gcloud auth login
|
|
gcloud config set project my-gcp-project
|
|
|
|
# Enable APIs
|
|
gcloud services enable \
|
|
aiplatform.googleapis.com \
|
|
run.googleapis.com \
|
|
cloudbuild.googleapis.com
|
|
```
|
|
|
|
### 3. Set Up Environment
|
|
```bash
|
|
# Copy example env
|
|
cp .env.example .env
|
|
|
|
# Edit with your values
|
|
vim .env
|
|
```
|
|
|
|
**Required variables:**
|
|
```env
|
|
GOOGLE_CLOUD_PROJECT=my-gcp-project
|
|
GOOGLE_CLOUD_REGION=us-central1
|
|
GOOGLE_APPLICATION_CREDENTIALS=/path/to/key.json
|
|
VERTEX_AI_SEARCH_DATASTORE=datastore-id
|
|
```
|
|
|
|
### 4. Test Locally
|
|
```bash
|
|
# Run agent locally
|
|
python src/agent.py
|
|
|
|
# Or use ADK CLI
|
|
adk serve --port 8080
|
|
|
|
# Test endpoint
|
|
curl http://localhost:8080/query \
|
|
-H "Content-Type: application/json" \
|
|
-d '{"question": "What are your support hours?"}'
|
|
```
|
|
|
|
### 5. Run Tests
|
|
```bash
|
|
# Unit tests
|
|
pytest tests/unit/
|
|
|
|
# Integration tests
|
|
pytest tests/integration/
|
|
|
|
# Coverage report
|
|
pytest --cov=src tests/
|
|
```
|
|
|
|
### 6. Deploy to Cloud Run
|
|
```bash
|
|
# Using ADK CLI (recommended)
|
|
adk deploy \
|
|
--target cloud_run \
|
|
--region us-central1 \
|
|
--allow-unauthenticated
|
|
|
|
# Or using gcloud
|
|
gcloud run deploy customer-support-agent \
|
|
--source . \
|
|
--region us-central1 \
|
|
--allow-unauthenticated \
|
|
--memory 2Gi \
|
|
--cpu 2 \
|
|
--timeout 300s
|
|
```
|
|
|
|
### 7. Setup CI/CD
|
|
```bash
|
|
# Connect GitHub repo
|
|
gh repo create customer-support-agent --public
|
|
git init
|
|
git add .
|
|
git commit -m "Initial agent setup"
|
|
git branch -M main
|
|
git remote add origin https://github.com/USER/customer-support-agent.git
|
|
git push -u origin main
|
|
|
|
# GitHub Actions automatically trigger on push
|
|
```
|
|
|
|
### 8. Monitor Deployment
|
|
```bash
|
|
# View logs
|
|
gcloud run services logs read customer-support-agent \
|
|
--region us-central1 \
|
|
--limit 100 \
|
|
--format json
|
|
|
|
# Check metrics
|
|
gcloud monitoring dashboards create \
|
|
--config-from-file monitoring/dashboard.json
|
|
```
|
|
|
|
## Advanced Features
|
|
|
|
### RAG Integration
|
|
```python
|
|
# Automatically included in agentic_rag template
|
|
from vertexai.preview.rag import VectorSearchTool
|
|
|
|
vector_search = VectorSearchTool(
|
|
index_endpoint="projects/PROJECT/locations/REGION/indexEndpoints/INDEX",
|
|
deployed_index_id="deployed_index"
|
|
)
|
|
|
|
agent.add_tool(vector_search)
|
|
```
|
|
|
|
### Multi-Agent Orchestration
|
|
```python
|
|
# Automatically included in crewai_coding_crew template
|
|
from crewai import Agent, Task, Crew
|
|
|
|
researcher = Agent(
|
|
role="Researcher",
|
|
goal="Research technical topics",
|
|
tools=[search_tool]
|
|
)
|
|
|
|
writer = Agent(
|
|
role="Writer",
|
|
goal="Write documentation",
|
|
tools=[write_tool]
|
|
)
|
|
|
|
crew = Crew(
|
|
agents=[researcher, writer],
|
|
tasks=[research_task, write_task]
|
|
)
|
|
```
|
|
|
|
### Custom Tools
|
|
```python
|
|
# Add custom tools to any agent
|
|
from vertexai.preview.agents import FunctionTool
|
|
|
|
@FunctionTool
|
|
def check_inventory(product_id: str) -> dict:
|
|
"""Check product inventory levels"""
|
|
# Your custom logic
|
|
return {"in_stock": True, "quantity": 42}
|
|
|
|
agent.add_tool(check_inventory)
|
|
```
|
|
|
|
## Cost Estimation
|
|
|
|
**Development:**
|
|
- Local testing: Free
|
|
- CI/CD (GitHub Actions): Free (2000 min/month)
|
|
|
|
**Production (Cloud Run):**
|
|
- Idle: $0 (scales to zero)
|
|
- Active: ~$0.10/hour at moderate load
|
|
- Gemini API: $3.50/1M tokens
|
|
|
|
**Monthly estimate for typical agent:**
|
|
- Infrastructure: $50-100
|
|
- AI API costs: $100-300
|
|
- Total: $150-400/month
|
|
|
|
## Troubleshooting
|
|
|
|
### Common Issues
|
|
|
|
**1. Authentication Errors**
|
|
```bash
|
|
# Fix: Set credentials
|
|
export GOOGLE_APPLICATION_CREDENTIALS=/path/to/key.json
|
|
gcloud auth application-default login
|
|
```
|
|
|
|
**2. Timeout Errors**
|
|
```bash
|
|
# Fix: Increase Cloud Run timeout
|
|
gcloud run services update customer-support-agent \
|
|
--timeout 300s
|
|
```
|
|
|
|
**3. Memory Issues**
|
|
```bash
|
|
# Fix: Increase memory
|
|
gcloud run services update customer-support-agent \
|
|
--memory 4Gi
|
|
```
|
|
|
|
**4. Rate Limiting**
|
|
```bash
|
|
# Fix: Implement exponential backoff
|
|
# Code automatically included in templates
|
|
```
|
|
|
|
## Next Steps
|
|
|
|
After deployment:
|
|
1. **Add custom tools** for your use case
|
|
2. **Configure RAG data sources** (if using agentic_rag)
|
|
3. **Set up monitoring alerts**
|
|
4. **Implement evaluation metrics**
|
|
5. **Scale based on traffic**
|
|
|
|
## Resources
|
|
|
|
**Documentation:**
|
|
- ADK Quickstart: https://google.github.io/adk-docs/
|
|
- Agent Starter Pack: https://github.com/GoogleCloudPlatform/agent-starter-pack
|
|
- Cloud Run Docs: https://cloud.google.com/run/docs
|
|
|
|
**Examples:**
|
|
- Agent Gallery: https://cloud.google.com/vertex-ai/generative-ai/docs/samples
|
|
- GitHub Samples: https://github.com/GoogleCloudPlatform/generative-ai
|
|
|
|
---
|
|
|
|
**This command scaffolds production-ready agent projects in <5 minutes with full CI/CD, testing, and deployment automation.**
|