Files
gh-jeremylongshore-claude-c…/commands/openbb-portfolio.md
2025-11-30 08:20:18 +08:00

156 lines
4.3 KiB
Markdown

---
name: openbb-portfolio
description: Portfolio analysis and optimization using OpenBB - performance tracking, risk metrics, asset allocation, rebalancing
---
# OpenBB Portfolio Analysis
Comprehensive portfolio management and optimization using OpenBB Platform.
## Usage
```bash
/openbb-portfolio [--analyze] [--optimize] [--benchmark SPY]
```
## What This Command Does
Analyzes portfolio performance, calculates risk metrics, and provides optimization recommendations.
## Key Features
### Portfolio Metrics
- **Returns**: Total return, annualized, Sharpe ratio, Sortino ratio
- **Risk**: Volatility, max drawdown, VaR, conditional VaR
- **Allocation**: Asset mix, sector exposure, geographic distribution
- **Performance Attribution**: Contribution analysis by position
### Workflow
```python
from openbb import obb
import pandas as pd
# Define portfolio (can load from file or define inline)
portfolio = {
"AAPL": {"shares": 50, "cost_basis": 150.00},
"MSFT": {"shares": 30, "cost_basis": 300.00},
"GOOGL": {"shares": 20, "cost_basis": 2500.00},
"BTC-USD": {"shares": 0.5, "cost_basis": 45000.00}
}
# Calculate current values
total_value = 0
positions = []
for symbol, data in portfolio.items():
current_price = obb.equity.price.quote(symbol=symbol).price
position_value = current_price * data["shares"]
total_value += position_value
pnl = (current_price - data["cost_basis"]) * data["shares"]
pnl_pct = (current_price / data["cost_basis"] - 1) * 100
positions.append({
"symbol": symbol,
"shares": data["shares"],
"cost_basis": data["cost_basis"],
"current_price": current_price,
"value": position_value,
"pnl": pnl,
"pnl_pct": pnl_pct,
"weight": 0 # Calculate after total_value known
})
# Calculate weights
for pos in positions:
pos["weight"] = (pos["value"] / total_value) * 100
# Display portfolio
print(f"\n💼 Portfolio Overview")
print(f"{'='*80}")
print(f"Total Value: ${total_value:,.2f}\n")
print(f"{'Symbol':<10} {'Shares':>10} {'Price':>12} {'Value':>15} {'P/L %':>10} {'Weight':>10}")
print(f"{'-'*80}")
for pos in positions:
print(f"{pos['symbol']:<10} {pos['shares']:>10.2f} ${pos['current_price']:>11.2f} "
f"${pos['value']:>14.2f} {pos['pnl_pct']:>9.1f}% {pos['weight']:>9.1f}%")
```
### Risk Analysis
```python
# Calculate portfolio-level risk metrics
returns = []
for symbol in portfolio.keys():
hist = obb.equity.price.historical(symbol=symbol, period="1y")
returns.append(hist.to_dataframe()['close'].pct_change())
portfolio_returns = pd.concat(returns, axis=1).mean(axis=1)
portfolio_vol = portfolio_returns.std() * (252 ** 0.5) * 100 # Annualized
# Sharpe Ratio (assuming 4% risk-free rate)
risk_free_rate = 0.04
sharpe = (portfolio_returns.mean() * 252 - risk_free_rate) / (portfolio_returns.std() * (252 ** 0.5))
# Max Drawdown
cumulative = (1 + portfolio_returns).cumprod()
running_max = cumulative.expanding().max()
drawdown = (cumulative - running_max) / running_max
max_dd = drawdown.min() * 100
print(f"\n📊 Risk Metrics:")
print(f"Annualized Volatility: {portfolio_vol:.2f}%")
print(f"Sharpe Ratio: {sharpe:.2f}")
print(f"Max Drawdown: {max_dd:.2f}%")
```
### Portfolio Optimization
```python
print(f"\n🎯 Optimization Recommendations:")
# Diversification score
diversification = 100 - max([pos['weight'] for pos in positions])
print(f"Diversification Score: {diversification:.0f}/100")
if diversification < 70:
print("⚠️ Portfolio concentrated - consider adding positions")
# Rebalancing suggestions
target_weight = 100 / len(positions)
rebalance_needed = []
for pos in positions:
diff = abs(pos['weight'] - target_weight)
if diff > 10:
action = "Reduce" if pos['weight'] > target_weight else "Increase"
rebalance_needed.append(f"{action} {pos['symbol']}: {pos['weight']:.1f}% → {target_weight:.1f}%")
if rebalance_needed:
print(f"\n🔄 Rebalancing Suggestions:")
for suggestion in rebalance_needed:
print(f"{suggestion}")
```
## Examples
```bash
# Analyze current portfolio
/openbb-portfolio --analyze
# Optimize allocation
/openbb-portfolio --optimize
# Compare to SPY benchmark
/openbb-portfolio --benchmark=SPY
```
## Integration
- Import positions from CSV/Excel
- Export reports to PDF
- Sync with brokerage accounts (via supported integrations)
- Tax-loss harvesting analysis