Files
gh-jeremylongshore-claude-c…/skills/data-preprocessing-pipeline/assets/example_data.csv
2025-11-29 18:51:07 +08:00

1.3 KiB

1# example_data.csv
2# This CSV file provides sample data to demonstrate the functionality of the data_preprocessing_pipeline plugin.
3#
4# Column Descriptions:
5# - ID: Unique identifier for each record.
6# - Feature1: Numerical feature with some missing values.
7# - Feature2: Categorical feature with multiple categories and potential typos.
8# - Feature3: Date feature in string format.
9# - Target: Binary target variable (0 or 1).
10#
11# Placeholders:
12# - [MISSING_VALUE]: Represents a missing value to be handled by the pipeline.
13# - [TYPO_CATEGORY]: Represents a typo in a categorical value.
14#
15# Instructions:
16# - Feel free to modify this data to test different preprocessing scenarios.
17# - Ensure the data adheres to the expected format for each column.
18# - Use the `/preprocess` command to trigger the preprocessing pipeline on this data.
19IDFeature1Feature2Feature3Target
20110.5CategoryA2023-01-151
21212.0CategoryB2023-02-200
223[MISSING_VALUE]CategoryC2023-03-251
23415.2CategoryA2023-04-010
2459.8CateogryB[MISSING_VALUE]1
25611.3CategoryC2023-05-100
26713.7CategoryA2023-06-151
278[MISSING_VALUE]CategoryB2023-07-200
28916.1CategoryC2023-08-251
291010.0CategoryA2023-09-010
301112.5[TYPO_CATEGORY]2023-10-101
311214.9CategoryB2023-11-150
321311.8CategoryC2023-12-201
331413.2CategoryA2024-01-250
34159.5CategoryB2024-02-011