1.3 KiB
1.3 KiB
| 1 | # example_data.csv | ||||
|---|---|---|---|---|---|
| 2 | # This CSV file provides sample data to demonstrate the functionality of the data_preprocessing_pipeline plugin. | ||||
| 3 | # | ||||
| 4 | # Column Descriptions: | ||||
| 5 | # - ID: Unique identifier for each record. | ||||
| 6 | # - Feature1: Numerical feature with some missing values. | ||||
| 7 | # - Feature2: Categorical feature with multiple categories and potential typos. | ||||
| 8 | # - Feature3: Date feature in string format. | ||||
| 9 | # - Target: Binary target variable (0 or 1). | ||||
| 10 | # | ||||
| 11 | # Placeholders: | ||||
| 12 | # - [MISSING_VALUE]: Represents a missing value to be handled by the pipeline. | ||||
| 13 | # - [TYPO_CATEGORY]: Represents a typo in a categorical value. | ||||
| 14 | # | ||||
| 15 | # Instructions: | ||||
| 16 | # - Feel free to modify this data to test different preprocessing scenarios. | ||||
| 17 | # - Ensure the data adheres to the expected format for each column. | ||||
| 18 | # - Use the `/preprocess` command to trigger the preprocessing pipeline on this data. | ||||
| 19 | ID | Feature1 | Feature2 | Feature3 | Target |
| 20 | 1 | 10.5 | CategoryA | 2023-01-15 | 1 |
| 21 | 2 | 12.0 | CategoryB | 2023-02-20 | 0 |
| 22 | 3 | [MISSING_VALUE] | CategoryC | 2023-03-25 | 1 |
| 23 | 4 | 15.2 | CategoryA | 2023-04-01 | 0 |
| 24 | 5 | 9.8 | CateogryB | [MISSING_VALUE] | 1 |
| 25 | 6 | 11.3 | CategoryC | 2023-05-10 | 0 |
| 26 | 7 | 13.7 | CategoryA | 2023-06-15 | 1 |
| 27 | 8 | [MISSING_VALUE] | CategoryB | 2023-07-20 | 0 |
| 28 | 9 | 16.1 | CategoryC | 2023-08-25 | 1 |
| 29 | 10 | 10.0 | CategoryA | 2023-09-01 | 0 |
| 30 | 11 | 12.5 | [TYPO_CATEGORY] | 2023-10-10 | 1 |
| 31 | 12 | 14.9 | CategoryB | 2023-11-15 | 0 |
| 32 | 13 | 11.8 | CategoryC | 2023-12-20 | 1 |
| 33 | 14 | 13.2 | CategoryA | 2024-01-25 | 0 |
| 34 | 15 | 9.5 | CategoryB | 2024-02-01 | 1 |