# example_data.csv # This CSV file provides sample data to demonstrate the functionality of the data_preprocessing_pipeline plugin. # # Column Descriptions: # - ID: Unique identifier for each record. # - Feature1: Numerical feature with some missing values. # - Feature2: Categorical feature with multiple categories and potential typos. # - Feature3: Date feature in string format. # - Target: Binary target variable (0 or 1). # # Placeholders: # - [MISSING_VALUE]: Represents a missing value to be handled by the pipeline. # - [TYPO_CATEGORY]: Represents a typo in a categorical value. # # Instructions: # - Feel free to modify this data to test different preprocessing scenarios. # - Ensure the data adheres to the expected format for each column. # - Use the `/preprocess` command to trigger the preprocessing pipeline on this data. ID,Feature1,Feature2,Feature3,Target 1,10.5,CategoryA,2023-01-15,1 2,12.0,CategoryB,2023-02-20,0 3,[MISSING_VALUE],CategoryC,2023-03-25,1 4,15.2,CategoryA,2023-04-01,0 5,9.8,CateogryB,[MISSING_VALUE],1 6,11.3,CategoryC,2023-05-10,0 7,13.7,CategoryA,2023-06-15,1 8,[MISSING_VALUE],CategoryB,2023-07-20,0 9,16.1,CategoryC,2023-08-25,1 10,10.0,CategoryA,2023-09-01,0 11,12.5,[TYPO_CATEGORY],2023-10-10,1 12,14.9,CategoryB,2023-11-15,0 13,11.8,CategoryC,2023-12-20,1 14,13.2,CategoryA,2024-01-25,0 15,9.5,CategoryB,2024-02-01,1