Initial commit
This commit is contained in:
36
skills/automl-pipeline-builder/assets/example_dataset.csv
Normal file
36
skills/automl-pipeline-builder/assets/example_dataset.csv
Normal file
@@ -0,0 +1,36 @@
|
||||
# Sample dataset for AutoML pipeline builder plugin
|
||||
# This dataset is a simplified example and may not be suitable for all AutoML tasks.
|
||||
# Replace this with your actual dataset for optimal results.
|
||||
#
|
||||
# Columns:
|
||||
# feature1: Numerical feature (e.g., age, income)
|
||||
# feature2: Categorical feature (e.g., city, product type) - encoded as strings
|
||||
# target: Target variable (e.g., churn, conversion) - binary (0 or 1)
|
||||
|
||||
feature1,feature2,target
|
||||
25,New York,0
|
||||
30,Los Angeles,1
|
||||
40,Chicago,0
|
||||
22,Houston,0
|
||||
35,Phoenix,1
|
||||
48,Philadelphia,1
|
||||
28,San Antonio,0
|
||||
32,San Diego,1
|
||||
45,Dallas,0
|
||||
27,San Jose,0
|
||||
31,Austin,1
|
||||
38,Jacksonville,0
|
||||
24,Fort Worth,0
|
||||
41,Columbus,1
|
||||
29,Charlotte,0
|
||||
33,San Francisco,1
|
||||
46,Indianapolis,1
|
||||
23,Seattle,0
|
||||
36,Denver,1
|
||||
49,Washington,1
|
||||
# Add more data rows here. Aim for a larger dataset (hundreds or thousands of rows) for better AutoML performance.
|
||||
# Example:
|
||||
# 52,Miami,0
|
||||
# 39,Boston,1
|
||||
# Consider adding missing values (e.g., empty strings) to test the pipeline's handling of missing data.
|
||||
# For categorical features with many unique values, consider using techniques like one-hot encoding or target encoding.
|
||||
|
Reference in New Issue
Block a user