1.1 KiB
1.1 KiB
| 1 | # Sample dataset for AutoML pipeline builder plugin |
|---|---|
| 2 | # This dataset is a simplified example and may not be suitable for all AutoML tasks. |
| 3 | # Replace this with your actual dataset for optimal results. |
| 4 | # |
| 5 | # Columns: |
| 6 | # feature1: Numerical feature (e.g., age, income) |
| 7 | # feature2: Categorical feature (e.g., city, product type) - encoded as strings |
| 8 | # target: Target variable (e.g., churn, conversion) - binary (0 or 1) |
| 9 | feature1,feature2,target |
| 10 | 25,New York,0 |
| 11 | 30,Los Angeles,1 |
| 12 | 40,Chicago,0 |
| 13 | 22,Houston,0 |
| 14 | 35,Phoenix,1 |
| 15 | 48,Philadelphia,1 |
| 16 | 28,San Antonio,0 |
| 17 | 32,San Diego,1 |
| 18 | 45,Dallas,0 |
| 19 | 27,San Jose,0 |
| 20 | 31,Austin,1 |
| 21 | 38,Jacksonville,0 |
| 22 | 24,Fort Worth,0 |
| 23 | 41,Columbus,1 |
| 24 | 29,Charlotte,0 |
| 25 | 33,San Francisco,1 |
| 26 | 46,Indianapolis,1 |
| 27 | 23,Seattle,0 |
| 28 | 36,Denver,1 |
| 29 | 49,Washington,1 |
| 30 | # Add more data rows here. Aim for a larger dataset (hundreds or thousands of rows) for better AutoML performance. |
| 31 | # Example: |
| 32 | # 52,Miami,0 |
| 33 | # 39,Boston,1 |
| 34 | # Consider adding missing values (e.g., empty strings) to test the pipeline's handling of missing data. |
| 35 | # For categorical features with many unique values, consider using techniques like one-hot encoding or target encoding. |