Files
gh-jeremylongshore-claude-c…/commands/make-builder.md
2025-11-29 18:50:41 +08:00

278 lines
7.0 KiB
Markdown

---
description: Design Make.com scenarios with AI assistance
---
# Make.com Scenario Builder
Create visual Make.com automation scenarios with detailed module configuration.
## Usage
When the user requests a Make.com scenario, design a complete visual workflow with module-by-module instructions.
## Scenario Templates
### 1. AI Email Auto-Responder
**Flow:**
```
Gmail: Watch emails
→ OpenAI: Generate response
→ Gmail: Send email
→ Google Sheets: Log conversation
```
**Module Configuration:**
1. **Gmail: Watch emails**
- Connection: Your Gmail
- Folder: INBOX
- Criteria: Unread messages
- Max results: 10
2. **OpenAI: Create completion**
- Connection: Your OpenAI API
- Model: gpt-4
- Max tokens: 500
- Temperature: 0.7
- Prompt: `Draft a professional response to:\n\nFrom: {{1.from}}\nSubject: {{1.subject}}\nBody: {{1.textPlain}}`
3. **Gmail: Send an email**
- To: `{{1.from}}`
- Subject: `Re: {{1.subject}}`
- Content: `{{2.choices[0].message.content}}`
4. **Google Sheets: Add a row**
- Spreadsheet: Email Log
- Sheet: Responses
- From: `{{1.from}}`
- Subject: `{{1.subject}}`
- Response: `{{2.choices[0].message.content}}`
- Date: `{{now}}`
### 2. Lead Qualification with AI
**Flow:**
```
Webhook: Custom webhook
→ OpenAI: Score lead
→ Router:
├─ High score → Slack notification + HubSpot deal
├─ Medium score → Email nurture
└─ Low score → Archive to Airtable
```
**Module Configuration:**
1. **Webhook**
- Create a custom webhook
- Expected data: name, email, company, role, budget
2. **OpenAI: Create completion**
- Prompt: `Score this lead from 0-100:\nName: {{1.name}}\nCompany: {{1.company}}\nRole: {{1.role}}\nBudget: {{1.budget}}\n\nProvide only the numeric score.`
- Parse: Use Text parser to extract number
3. **Router**
- Route 1 Filter: `{{3.score}}` Greater than `70`
- Route 2 Filter: `{{3.score}}` Between `40` and `70`
- Fallback: All other cases
4A. **Slack: Create a message** (High route)
- Channel: #sales-leads
- Text: ` Hot lead: {{1.name}} from {{1.company}} - Score: {{3.score}}`
4B. **HubSpot: Create a deal** (High route)
- Deal name: `{{1.company}} - {{1.name}}`
- Stage: Qualification
- Amount: `{{1.budget}}`
5. **ActiveCampaign: Add contact to list** (Medium route)
- Email: `{{1.email}}`
- List: Nurture Campaign
- Tags: `medium-priority,{{1.role}}`
6. **Airtable: Create a record** (Low route)
- Base: Leads
- Table: Archived
- Fields: Map all lead data + score
### 3. Content Distribution Pipeline
**Flow:**
```
RSS: Read feed
→ Filter: New items only
→ OpenAI: Rewrite for social
→ Iterator: For each platform
├─ Twitter: Post
├─ LinkedIn: Post
└─ Facebook: Post
```
**Module Configuration:**
1. **RSS: Watch RSS feed items**
- URL: Your RSS feed
- Maximum number of returned items: 5
2. **Filter**
- Condition: `{{1.published}}` After `{{addHours(now; -24)}}`
- Label: "Only items from last 24 hours"
3. **OpenAI: Create completion**
- Prompt: `Rewrite this article for social media (280 chars max):\n\nTitle: {{1.title}}\nContent: {{1.contentSnippet}}\n\nMake it engaging with relevant hashtags.`
4. **Set multiple variables**
- platforms: `["twitter", "linkedin", "facebook"]`
- content: `{{3.choices[0].message.content}}`
- link: `{{1.link}}`
5. **Iterator**
- Array: `{{4.platforms}}`
6A. **Twitter: Create a tweet**
- Text: `{{4.content}}\n\n{{4.link}}`
6B. **LinkedIn: Create a post**
- Text: `{{4.content}}\n\n{{4.link}}`
6C. **Facebook: Create a post**
- Message: `{{4.content}}`
- Link: `{{4.link}}`
### 4. Document Processing Workflow
**Flow:**
```
Google Drive: Watch files
→ Filter: PDFs only
→ OCR.space: Extract text
→ OpenAI: Summarize & extract data
→ Router:
├─ Success → Google Sheets: Log + Email summary
└─ Error → Slack: Notify failure
```
**Module Configuration:**
1. **Google Drive: Watch files**
- Folder: Inbox
- Types: application/pdf
- Limit: 10
2. **Filter**
- Condition: File name contains "invoice" OR "receipt"
3. **HTTP: Make a request (OCR.space)**
- URL: https://api.ocr.space/parse/image
- Method: POST
- Headers: apikey: YOUR_OCR_KEY
- Body: file: `{{1.data}}`
4. **OpenAI: Create completion**
- Prompt: `Extract structured data from this document:\n\n{{3.ParsedResults[0].ParsedText}}\n\nProvide: Date, Amount, Vendor, Category`
- Format: JSON mode
5. **Google Sheets: Add a row**
- Spreadsheet: Document Log
- Date: `{{4.date}}`
- Amount: `{{4.amount}}`
- Vendor: `{{4.vendor}}`
- Category: `{{4.category}}`
6. **Gmail: Send an email**
- To: accounting@company.com
- Subject: New document processed: `{{1.name}}`
- Body: Summary of extracted data
**Error Handler on all modules:**
- Slack: Send message to #errors channel
### 5. Customer Support Automation
**Flow:**
```
Zendesk: Watch tickets
→ OpenAI: Classify urgency + category
→ Router:
├─ Urgent → Assign to senior agent + Slack alert
├─ Normal → Assign to queue + Draft response
└─ Low → Auto-respond with KB articles
```
**Module Configuration:**
1. **Zendesk: Watch tickets**
- Status: new
- Limit: 20
2. **OpenAI: Create completion**
- Prompt: `Classify this support ticket:\n\nSubject: {{1.subject}}\nDescription: {{1.description}}\n\nProvide:\n1. Urgency (high/medium/low)\n2. Category (billing/technical/general)\n3. Suggested response`
3. **Router**
- Route 1: Urgency = "high"
- Route 2: Urgency = "medium"
- Route 3: Urgency = "low"
4A. **Zendesk: Update ticket** (Urgent)
- Priority: urgent
- Assignee: Senior agent ID
4B. **Slack: Create message** (Urgent)
- Channel: #support-urgent
- Text: ` Urgent ticket: {{1.subject}} - {{1.ticket_id}}`
5. **Zendesk: Update ticket** (Normal)
- Priority: normal
- Comment: `{{2.suggested_response}}`
- Status: pending
6. **Zendesk: Update ticket** (Low)
- Comment: Auto-generated response + KB links
- Status: solved
## Best Practices
1. **Always add error handlers** to critical modules
2. **Use filters early** to reduce operations
3. **Test with sample data** before activating
4. **Monitor operations usage** in Make dashboard
5. **Add notes to modules** for documentation
6. **Use variables** for reusable values
7. **Set up notifications** for failures
8. **Clone scenarios** before major changes
## Output Format
When generating a scenario, provide:
```markdown
## Scenario: [Name]
### Business Value
[What problem this solves]
### Visual Flow
[ASCII diagram or clear description]
### Module Configuration
[Detailed setup for each module]
### Data Mapping
[How data flows between modules]
### Testing Steps
1. [Step by step testing instructions]
### Cost Estimate
- Operations per execution: X
- Expected monthly runs: Y
- Total operations: Z
- Make plan needed: [Free/Core/Pro]
### Setup Time
Estimated: [X] minutes
```
This helps users implement Make.com scenarios quickly with clear, actionable instructions.