Files
2025-11-29 18:48:55 +08:00

470 lines
11 KiB
Markdown

# LeetCode Patterns Reference
The 20 essential coding patterns for technical interviews with templates and real product examples.
## Pattern 1: Two Pointers
**When to Use:** Find pairs, triplets, or process sorted arrays
**Time:** O(n), **Space:** O(1)
### Template (Python)
```python
def two_pointers(arr):
left, right = 0, len(arr) - 1
while left < right:
# Process current pair
if condition:
# Found solution
return [left, right]
elif arr[left] + arr[right] < target:
left += 1
else:
right -= 1
return []
```
### Real Example: Instagram Mutual Likes
```python
def find_mutual_likes(user_ids, target_sum):
"""Find two users whose IDs sum to target"""
left, right = 0, len(user_ids) - 1
while left < right:
current_sum = user_ids[left] + user_ids[right]
if current_sum == target_sum:
return [left, right]
elif current_sum < target_sum:
left += 1
else:
right -= 1
return []
```
## Pattern 2: Sliding Window
**When to Use:** Find subarray/substring with property
**Time:** O(n), **Space:** O(k)
### Template (Python)
```python
def sliding_window(arr, k):
window_start = 0
max_sum = 0
window_sum = 0
for window_end in range(len(arr)):
window_sum += arr[window_end]
if window_end >= k - 1:
max_sum = max(max_sum, window_sum)
window_sum -= arr[window_start]
window_start += 1
return max_sum
```
### Real Example: Twitter Trending Topics
```python
def trending_in_window(tweets, time_window):
"""Find most mentioned hashtag in time window"""
hashtag_count = {}
max_count = 0
trending = ""
for i, tweet in enumerate(tweets):
# Add new tweet
if tweet.hashtag in hashtag_count:
hashtag_count[tweet.hashtag] += 1
else:
hashtag_count[tweet.hashtag] = 1
# Remove old tweets outside window
if i >= time_window:
old_tag = tweets[i - time_window].hashtag
hashtag_count[old_tag] -= 1
if hashtag_count[old_tag] == 0:
del hashtag_count[old_tag]
# Track max
for tag, count in hashtag_count.items():
if count > max_count:
max_count = count
trending = tag
return trending
```
## Pattern 3: Fast & Slow Pointers
**When to Use:** Detect cycles, find middle element
**Time:** O(n), **Space:** O(1)
### Template (Python)
```python
def has_cycle(head):
slow = fast = head
while fast and fast.next:
slow = slow.next
fast = fast.next.next
if slow == fast:
return True
return False
```
### Real Example: Package Manager Circular Dependency
```python
def detect_circular_dependency(package):
"""Detect if package has circular dependencies"""
slow = fast = package
while fast and fast.next_dependency:
slow = slow.next_dependency
fast = fast.next_dependency.next_dependency
if slow == fast:
return True # Circular dependency found!
return False
```
## Pattern 4: Merge Intervals
**When to Use:** Overlapping intervals, scheduling
**Time:** O(n log n), **Space:** O(n)
### Template (Python)
```python
def merge_intervals(intervals):
if not intervals:
return []
intervals.sort(key=lambda x: x[0])
merged = [intervals[0]]
for current in intervals[1:]:
last = merged[-1]
if current[0] <= last[1]:
# Overlapping, merge
merged[-1] = [last[0], max(last[1], current[1])]
else:
# Non-overlapping
merged.append(current)
return merged
```
### Real Example: Google Calendar Free Slots
```python
def find_free_slots(calendars, duration):
"""Find free meeting slots for all attendees"""
# Merge all busy times
busy = []
for calendar in calendars:
busy.extend(calendar.busy_times)
busy.sort()
merged_busy = merge_intervals(busy)
# Find gaps >= duration
free_slots = []
for i in range(len(merged_busy) - 1):
gap_start = merged_busy[i][1]
gap_end = merged_busy[i + 1][0]
if gap_end - gap_start >= duration:
free_slots.append([gap_start, gap_end])
return free_slots
```
## Pattern 5: Binary Search (Modified)
**When to Use:** Search in O(log n), find boundary
**Time:** O(log n), **Space:** O(1)
### Template (Python)
```python
def binary_search_modified(arr, target):
left, right = 0, len(arr) - 1
while left <= right:
mid = (left + right) // 2
if arr[mid] == target:
return mid
elif arr[mid] < target:
left = mid + 1
else:
right = mid - 1
return -1
```
### Real Example: GitHub Find Bug Introduction Version
```python
def find_first_bad_version(versions):
"""Binary search to find when bug was introduced"""
left, right = 0, len(versions) - 1
first_bad = -1
while left <= right:
mid = (left + right) // 2
if is_bad_version(versions[mid]):
first_bad = mid
right = mid - 1 # Look for earlier bad version
else:
left = mid + 1
return first_bad
```
## Pattern 6: Top K Elements
**When to Use:** Find top/bottom K items
**Time:** O(n log k), **Space:** O(k)
### Template (Python)
```python
import heapq
def top_k_elements(nums, k):
# Min heap of size k
min_heap = []
for num in nums:
heapq.heappush(min_heap, num)
if len(min_heap) > k:
heapq.heappop(min_heap)
return min_heap
```
### Real Example: Reddit Top Posts
```python
def get_top_k_posts(posts, k):
"""Get top K posts by upvotes"""
min_heap = []
for post in posts:
heapq.heappush(min_heap, (post.upvotes, post))
if len(min_heap) > k:
heapq.heappop(min_heap)
return [post for (upvotes, post) in sorted(min_heap, reverse=True)]
```
## Pattern 7: BFS (Breadth-First Search)
**When to Use:** Shortest path, level-order traversal
**Time:** O(V + E), **Space:** O(V)
### Template (Python)
```python
from collections import deque
def bfs(root):
if not root:
return []
result = []
queue = deque([root])
while queue:
level_size = len(queue)
for _ in range(level_size):
node = queue.popleft()
result.append(node.val)
if node.left:
queue.append(node.left)
if node.right:
queue.append(node.right)
return result
```
### Real Example: LinkedIn Degrees of Connection
```python
def degrees_of_connection(user1, user2):
"""Find shortest connection path between users"""
if user1 == user2:
return 0
visited = {user1}
queue = deque([(user1, 0)])
while queue:
current_user, degree = queue.popleft()
for connection in current_user.connections:
if connection == user2:
return degree + 1
if connection not in visited:
visited.add(connection)
queue.append((connection, degree + 1))
return -1 # Not connected
```
## Pattern 8: DFS (Depth-First Search)
**When to Use:** Path finding, backtracking
**Time:** O(V + E), **Space:** O(V)
### Template (Python)
```python
def dfs(node, visited=None):
if visited is None:
visited = set()
if node in visited:
return
visited.add(node)
process(node)
for neighbor in node.neighbors:
dfs(neighbor, visited)
return visited
```
### Real Example: File System Path Finding
```python
def find_all_paths(start_dir, target_file):
"""Find all paths to target file"""
paths = []
def dfs(current_dir, path):
if current_dir.name == target_file:
paths.append(path + [current_dir.name])
return
for subdir in current_dir.subdirectories:
dfs(subdir, path + [current_dir.name])
dfs(start_dir, [])
return paths
```
## Pattern 9: Dynamic Programming
**When to Use:** Optimization, counting problems
**Time:** Varies (often O(n²)), **Space:** O(n) or O(n²)
### Template (Python)
```python
def dp_solution(n):
# Initialize DP array
dp = [0] * (n + 1)
dp[0] = base_case
# Fill DP array
for i in range(1, n + 1):
dp[i] = transition(dp[i-1], dp[i-2], ...)
return dp[n]
```
### Real Example: Minimum Venmo Transactions
```python
def min_transactions(debts):
"""Minimum transactions to settle all debts"""
# Calculate net balance for each person
balance = {}
for payer, payee, amount in debts:
balance[payer] = balance.get(payer, 0) - amount
balance[payee] = balance.get(payee, 0) + amount
# Remove zero balances
amounts = [v for v in balance.values() if v != 0]
def dfs(idx):
# Skip settled accounts
while idx < len(amounts) and amounts[idx] == 0:
idx += 1
if idx == len(amounts):
return 0
min_trans = float('inf')
for i in range(idx + 1, len(amounts)):
# Try settling idx with i
if amounts[idx] * amounts[i] < 0: # Different signs
amounts[i] += amounts[idx]
min_trans = min(min_trans, 1 + dfs(idx + 1))
amounts[i] -= amounts[idx] # Backtrack
return min_trans
return dfs(0)
```
## Pattern 10: Backtracking
**When to Use:** Generate all combinations, permutations
**Time:** Exponential, **Space:** O(n)
### Template (Python)
```python
def backtrack(path, choices):
if is_solution(path):
result.append(path[:])
return
for choice in choices:
# Make choice
path.append(choice)
# Recurse
backtrack(path, remaining_choices)
# Undo choice (backtrack)
path.pop()
```
### Real Example: Slack Channel Combinations
```python
def generate_team_combinations(members, team_size):
"""Generate all possible teams of given size"""
teams = []
def backtrack(start, current_team):
if len(current_team) == team_size:
teams.append(current_team[:])
return
for i in range(start, len(members)):
current_team.append(members[i])
backtrack(i + 1, current_team)
current_team.pop()
backtrack(0, [])
return teams
```
## Summary
Master these 10 core patterns (plus 10 more in advanced practice) and you'll be able to solve 90%+ of LeetCode problems. Focus on:
1. **Recognition**: "I've seen this pattern before"
2. **Template**: "I know the code structure"
3. **Adaptation**: "I can modify for this specific problem"
4. **Optimization**: "I can improve time/space complexity"
Practice each pattern 5-10 times until it becomes second nature!