Files
gh-jamesrochabrun-skills-qu…/skills/query-expert/SKILL.md
2025-11-29 18:49:43 +08:00

806 lines
17 KiB
Markdown

---
name: query-expert
description: Master SQL and database queries across multiple systems. Generate optimized queries, analyze performance, design indexes, and troubleshoot slow queries for PostgreSQL, MySQL, MongoDB, and more.
---
# Query Expert
Master database queries across SQL and NoSQL systems. Generate optimized queries, analyze performance with EXPLAIN plans, design effective indexes, and troubleshoot slow queries.
## What This Skill Does
Helps you write efficient, performant database queries:
- **Generate Queries** - SQL, MongoDB, GraphQL queries
- **Optimize Queries** - Performance tuning and refactoring
- **Design Indexes** - Index strategies for faster queries
- **Analyze Performance** - EXPLAIN plans and query analysis
- **Troubleshoot** - Debug slow queries and bottlenecks
- **Best Practices** - Query patterns and anti-patterns
## Supported Databases
### SQL Databases
- **PostgreSQL** - Advanced features, CTEs, window functions
- **MySQL/MariaDB** - InnoDB optimization, replication
- **SQLite** - Embedded database optimization
- **SQL Server** - T-SQL, execution plans, DMVs
- **Oracle** - PL/SQL, partitioning, hints
### NoSQL Databases
- **MongoDB** - Aggregation pipelines, indexes
- **Redis** - Key-value queries, Lua scripts
- **Elasticsearch** - Full-text search queries
- **Cassandra** - CQL, partition keys
### Query Languages
- **SQL** - Standard and vendor-specific
- **MongoDB Query Language** - Find, aggregation
- **GraphQL** - Efficient data fetching
- **Cypher** - Neo4j graph queries
## SQL Query Patterns
### SELECT Queries
#### Basic SELECT
```sql
-- ✅ Select only needed columns
SELECT
user_id,
email,
created_at
FROM users
WHERE status = 'active'
AND created_at > NOW() - INTERVAL '30 days'
ORDER BY created_at DESC
LIMIT 100;
-- ❌ Avoid SELECT *
SELECT * FROM users; -- Wastes resources
```
#### JOINs
```sql
-- INNER JOIN (most common)
SELECT
o.order_id,
o.total,
c.name AS customer_name,
c.email
FROM orders o
INNER JOIN customers c ON o.customer_id = c.customer_id
WHERE o.created_at >= '2024-01-01';
-- LEFT JOIN (include all left rows)
SELECT
c.customer_id,
c.name,
COUNT(o.order_id) AS order_count,
COALESCE(SUM(o.total), 0) AS total_spent
FROM customers c
LEFT JOIN orders o ON c.customer_id = o.customer_id
GROUP BY c.customer_id, c.name;
-- Multiple JOINs
SELECT
o.order_id,
c.name AS customer_name,
p.product_name,
oi.quantity,
oi.price
FROM orders o
INNER JOIN customers c ON o.customer_id = c.customer_id
INNER JOIN order_items oi ON o.order_id = oi.order_id
INNER JOIN products p ON oi.product_id = p.product_id
WHERE o.status = 'completed';
```
#### Subqueries
```sql
-- Subquery in WHERE
SELECT name, email
FROM customers
WHERE customer_id IN (
SELECT DISTINCT customer_id
FROM orders
WHERE total > 1000
);
-- Correlated subquery
SELECT
c.name,
(SELECT COUNT(*)
FROM orders o
WHERE o.customer_id = c.customer_id) AS order_count
FROM customers c;
-- ✅ Better: Use JOIN instead
SELECT
c.name,
COUNT(o.order_id) AS order_count
FROM customers c
LEFT JOIN orders o ON c.customer_id = o.customer_id
GROUP BY c.customer_id, c.name;
```
### Aggregation
```sql
-- GROUP BY with aggregates
SELECT
category,
COUNT(*) AS product_count,
AVG(price) AS avg_price,
MIN(price) AS min_price,
MAX(price) AS max_price,
SUM(stock_quantity) AS total_stock
FROM products
GROUP BY category
HAVING COUNT(*) > 5
ORDER BY avg_price DESC;
-- Multiple GROUP BY columns
SELECT
DATE_TRUNC('month', created_at) AS month,
category,
SUM(total) AS monthly_sales
FROM orders
GROUP BY DATE_TRUNC('month', created_at), category
ORDER BY month DESC, monthly_sales DESC;
-- ROLLUP for subtotals
SELECT
COALESCE(category, 'TOTAL') AS category,
COALESCE(brand, 'All Brands') AS brand,
SUM(sales) AS total_sales
FROM products
GROUP BY ROLLUP(category, brand);
```
### Window Functions (PostgreSQL, SQL Server, MySQL 8+)
```sql
-- ROW_NUMBER
SELECT
customer_id,
order_date,
total,
ROW_NUMBER() OVER (
PARTITION BY customer_id
ORDER BY order_date DESC
) AS order_rank
FROM orders;
-- Running totals
SELECT
order_date,
total,
SUM(total) OVER (
ORDER BY order_date
ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
) AS running_total
FROM orders;
-- RANK vs DENSE_RANK
SELECT
product_name,
sales,
RANK() OVER (ORDER BY sales DESC) AS rank,
DENSE_RANK() OVER (ORDER BY sales DESC) AS dense_rank,
NTILE(4) OVER (ORDER BY sales DESC) AS quartile
FROM products;
-- LAG and LEAD
SELECT
order_date,
total,
LAG(total, 1) OVER (ORDER BY order_date) AS prev_total,
LEAD(total, 1) OVER (ORDER BY order_date) AS next_total,
total - LAG(total, 1) OVER (ORDER BY order_date) AS change
FROM orders;
```
### CTEs (Common Table Expressions)
```sql
-- Simple CTE
WITH active_customers AS (
SELECT customer_id, name, email
FROM customers
WHERE status = 'active'
)
SELECT
ac.name,
COUNT(o.order_id) AS order_count
FROM active_customers ac
LEFT JOIN orders o ON ac.customer_id = o.customer_id
GROUP BY ac.customer_id, ac.name;
-- Multiple CTEs
WITH
monthly_sales AS (
SELECT
DATE_TRUNC('month', order_date) AS month,
SUM(total) AS sales
FROM orders
GROUP BY DATE_TRUNC('month', order_date)
),
avg_monthly AS (
SELECT AVG(sales) AS avg_sales
FROM monthly_sales
)
SELECT
ms.month,
ms.sales,
am.avg_sales,
ms.sales - am.avg_sales AS variance
FROM monthly_sales ms
CROSS JOIN avg_monthly am
ORDER BY ms.month;
-- Recursive CTE (hierarchies)
WITH RECURSIVE org_tree AS (
-- Base case
SELECT
employee_id,
name,
manager_id,
1 AS level,
ARRAY[employee_id] AS path
FROM employees
WHERE manager_id IS NULL
UNION ALL
-- Recursive case
SELECT
e.employee_id,
e.name,
e.manager_id,
ot.level + 1,
ot.path || e.employee_id
FROM employees e
INNER JOIN org_tree ot ON e.manager_id = ot.employee_id
)
SELECT * FROM org_tree ORDER BY path;
```
## Query Optimization
### 1. Use Indexes Effectively
```sql
-- Create index on frequently queried columns
CREATE INDEX idx_users_email ON users(email);
CREATE INDEX idx_orders_customer_date ON orders(customer_id, order_date);
-- Composite index (order matters!)
CREATE INDEX idx_orders_composite
ON orders(status, customer_id, order_date);
-- ✅ This query uses the index
SELECT * FROM orders
WHERE status = 'pending'
AND customer_id = 123
AND order_date > '2024-01-01';
-- ❌ This doesn't use the index (skips first column)
SELECT * FROM orders
WHERE customer_id = 123;
-- Partial/Filtered index (smaller, faster)
CREATE INDEX idx_active_users
ON users(email)
WHERE status = 'active';
-- Covering index (includes all needed columns)
CREATE INDEX idx_users_covering
ON users(email)
INCLUDE (name, created_at);
```
### 2. Avoid SELECT *
```sql
-- ❌ Bad: Retrieves all columns
SELECT * FROM users;
-- ✅ Good: Select only needed columns
SELECT user_id, email, name FROM users;
-- ✅ Good: More efficient for joins
SELECT
u.user_id,
u.email,
o.order_id,
o.total
FROM users u
INNER JOIN orders o ON u.user_id = o.user_id;
```
### 3. Optimize JOINs
```sql
-- ❌ Bad: Filtering after JOIN
SELECT u.name, o.total
FROM users u
LEFT JOIN orders o ON u.user_id = o.user_id
WHERE o.status = 'completed';
-- ✅ Good: Filter before JOIN
SELECT u.name, o.total
FROM users u
INNER JOIN (
SELECT user_id, total
FROM orders
WHERE status = 'completed'
) o ON u.user_id = o.user_id;
-- ✅ Even better: Use WHERE with INNER JOIN
SELECT u.name, o.total
FROM users u
INNER JOIN orders o ON u.user_id = o.user_id
WHERE o.status = 'completed';
```
### 4. Use EXISTS Instead of IN
```sql
-- ❌ Slower: IN with subquery
SELECT name FROM customers
WHERE customer_id IN (
SELECT customer_id FROM orders WHERE total > 1000
);
-- ✅ Faster: EXISTS
SELECT name FROM customers c
WHERE EXISTS (
SELECT 1 FROM orders o
WHERE o.customer_id = c.customer_id
AND o.total > 1000
);
```
### 5. Avoid Functions on Indexed Columns
```sql
-- ❌ Bad: Function prevents index usage
SELECT * FROM users
WHERE LOWER(email) = 'john@example.com';
-- ✅ Good: Use functional index
CREATE INDEX idx_users_email_lower ON users(LOWER(email));
-- Or use case-insensitive collation
SELECT * FROM users
WHERE email = 'john@example.com' COLLATE utf8_general_ci;
```
### 6. Limit Result Sets
```sql
-- ✅ Use LIMIT/TOP for pagination
SELECT * FROM orders
ORDER BY created_at DESC
LIMIT 20 OFFSET 0;
-- ✅ Use WHERE to reduce rows early
SELECT * FROM orders
WHERE created_at > NOW() - INTERVAL '7 days'
ORDER BY created_at DESC;
```
### 7. Batch Operations
```sql
-- ❌ Bad: Multiple single inserts
INSERT INTO users (name, email) VALUES ('User1', 'user1@example.com');
INSERT INTO users (name, email) VALUES ('User2', 'user2@example.com');
-- ✅ Good: Batch insert
INSERT INTO users (name, email) VALUES
('User1', 'user1@example.com'),
('User2', 'user2@example.com'),
('User3', 'user3@example.com');
-- ✅ Good: Batch update
UPDATE products
SET price = price * 1.1
WHERE category IN ('Electronics', 'Computers');
```
## EXPLAIN Plans
### PostgreSQL
```sql
-- Simple EXPLAIN
EXPLAIN
SELECT * FROM orders WHERE customer_id = 123;
-- EXPLAIN ANALYZE (actually runs query)
EXPLAIN ANALYZE
SELECT
c.name,
COUNT(o.order_id) AS order_count
FROM customers c
LEFT JOIN orders o ON c.customer_id = o.customer_id
GROUP BY c.customer_id, c.name;
-- Look for:
-- - Seq Scan (bad, needs index)
-- - Index Scan (good)
-- - Bitmap Heap Scan (good for multiple rows)
-- - Hash Join vs Nested Loop
-- - High cost numbers
```
### MySQL
```sql
-- EXPLAIN
EXPLAIN
SELECT * FROM orders WHERE customer_id = 123;
-- EXPLAIN ANALYZE (MySQL 8.0.18+)
EXPLAIN ANALYZE
SELECT * FROM orders WHERE customer_id = 123;
-- Look for:
-- - type: ALL (table scan, bad)
-- - type: index (index scan, good)
-- - type: ref (index lookup, great)
-- - Extra: Using filesort (may need index)
-- - Extra: Using temporary (may need optimization)
```
## Indexing Strategies
### When to Index
**✅ Index these columns:**
- Primary keys (automatic)
- Foreign keys
- Columns in WHERE clauses
- Columns in JOIN conditions
- Columns in ORDER BY
- Columns in GROUP BY
**❌ Don't index:**
- Small tables (< 1000 rows)
- Columns with low cardinality (few distinct values)
- Frequently updated columns
- Large text/blob columns
### Index Types
```sql
-- B-Tree (default, most common)
CREATE INDEX idx_users_email ON users(email);
-- Hash index (equality only, PostgreSQL)
CREATE INDEX idx_users_email_hash ON users USING HASH(email);
-- GIN (full-text search, arrays, JSONB)
CREATE INDEX idx_posts_content_gin
ON posts USING GIN(to_tsvector('english', content));
-- GiST (geometric, full-text)
CREATE INDEX idx_locations_gist
ON locations USING GIST(coordinates);
-- Partial index (filtered)
CREATE INDEX idx_orders_pending
ON orders(customer_id)
WHERE status = 'pending';
-- Expression index
CREATE INDEX idx_users_email_domain
ON users((email ~~ '%@gmail.com%'));
```
### Composite Index Order
```sql
-- Index column order matters!
CREATE INDEX idx_orders_search
ON orders(status, customer_id, created_at);
-- ✅ Uses index (left-most column)
WHERE status = 'completed'
-- ✅ Uses index (left-most columns)
WHERE status = 'completed' AND customer_id = 123
-- ✅ Uses full index
WHERE status = 'completed'
AND customer_id = 123
AND created_at > '2024-01-01'
-- ❌ Doesn't use index (skips first column)
WHERE customer_id = 123
-- ❌ Doesn't use index (skips first column)
WHERE created_at > '2024-01-01'
```
## MongoDB Queries
### Find Queries
```javascript
// Basic find
db.users.find({ status: 'active' })
// Find with projection
db.users.find(
{ status: 'active' },
{ name: 1, email: 1, _id: 0 }
)
// Find with operators
db.orders.find({
total: { $gt: 100, $lt: 1000 },
status: { $in: ['pending', 'processing'] },
'customer.city': 'New York'
})
// Find with sort and limit
db.products.find({ category: 'Electronics' })
.sort({ price: -1 })
.limit(10)
// Count
db.users.countDocuments({ status: 'active' })
```
### Aggregation Pipeline
```javascript
// Group and count
db.orders.aggregate([
{ $match: { status: 'completed' } },
{ $group: {
_id: '$customer_id',
total_orders: { $sum: 1 },
total_spent: { $sum: '$total' },
avg_order: { $avg: '$total' }
}},
{ $sort: { total_spent: -1 } },
{ $limit: 10 }
])
// Lookup (JOIN)
db.orders.aggregate([
{ $lookup: {
from: 'customers',
localField: 'customer_id',
foreignField: '_id',
as: 'customer'
}},
{ $unwind: '$customer' },
{ $project: {
order_id: 1,
total: 1,
'customer.name': 1,
'customer.email': 1
}}
])
// Complex aggregation
db.sales.aggregate([
// Filter
{ $match: {
date: { $gte: ISODate('2024-01-01') }
}},
// Add computed fields
{ $addFields: {
month: { $month: '$date' },
year: { $year: '$date' }
}},
// Group by month
{ $group: {
_id: { year: '$year', month: '$month' },
total_sales: { $sum: '$amount' },
order_count: { $sum: 1 },
avg_sale: { $avg: '$amount' }
}},
// Sort
{ $sort: { '_id.year': 1, '_id.month': 1 } },
// Reshape
{ $project: {
_id: 0,
date: {
$concat: [
{ $toString: '$_id.year' },
'-',
{ $toString: '$_id.month' }
]
},
total_sales: 1,
order_count: 1,
avg_sale: { $round: ['$avg_sale', 2] }
}}
])
```
### MongoDB Indexes
```javascript
// Single field index
db.users.createIndex({ email: 1 })
// Compound index
db.orders.createIndex({ customer_id: 1, created_at: -1 })
// Unique index
db.users.createIndex({ email: 1 }, { unique: true })
// Partial index
db.orders.createIndex(
{ customer_id: 1 },
{ partialFilterExpression: { status: 'active' } }
)
// Text index
db.products.createIndex({ name: 'text', description: 'text' })
// TTL index (auto-delete after time)
db.sessions.createIndex(
{ created_at: 1 },
{ expireAfterSeconds: 3600 }
)
// List indexes
db.users.getIndexes()
// Analyze query performance
db.orders.find({ customer_id: 123 }).explain('executionStats')
```
## GraphQL Queries
```graphql
# Basic query
query {
users {
id
name
email
}
}
# Query with arguments
query {
user(id: "123") {
name
email
orders {
id
total
status
}
}
}
# Query with variables
query GetUser($userId: ID!) {
user(id: $userId) {
name
email
orders(limit: 10, status: COMPLETED) {
id
total
createdAt
}
}
}
# Fragments (reusable fields)
fragment UserFields on User {
id
name
email
createdAt
}
query {
user(id: "123") {
...UserFields
orders {
id
total
}
}
}
# Avoid N+1 queries with DataLoader
query {
orders {
id
total
customer { # Batched by DataLoader
name
email
}
}
}
```
## Common Anti-Patterns
### ❌ N+1 Query Problem
```sql
-- Bad: N+1 queries
SELECT * FROM customers; -- 1 query
-- Then for each customer:
SELECT * FROM orders WHERE customer_id = ?; -- N queries
-- Good: Single JOIN query
SELECT
c.customer_id,
c.name,
o.order_id,
o.total
FROM customers c
LEFT JOIN orders o ON c.customer_id = o.customer_id;
```
### ❌ Using OR on Different Columns
```sql
-- Bad: Can't use indexes effectively
SELECT * FROM products
WHERE name = 'iPhone' OR category = 'Electronics';
-- Good: Use UNION
SELECT * FROM products WHERE name = 'iPhone'
UNION
SELECT * FROM products WHERE category = 'Electronics';
```
### ❌ Implicit Type Conversion
```sql
-- Bad: '123' is string, user_id is integer
SELECT * FROM users WHERE user_id = '123';
-- Good: Use correct type
SELECT * FROM users WHERE user_id = 123;
```
## Query Performance Checklist
- [ ] Select only needed columns (no SELECT *)
- [ ] Add indexes to WHERE/JOIN/ORDER BY columns
- [ ] Use EXPLAIN to analyze query plan
- [ ] Avoid functions on indexed columns
- [ ] Use EXISTS instead of IN for subqueries
- [ ] Batch INSERT/UPDATE operations
- [ ] Use appropriate JOIN types
- [ ] Filter early (WHERE before JOIN)
- [ ] Use LIMIT for large result sets
- [ ] Monitor slow query logs
- [ ] Update statistics regularly
- [ ] Avoid SELECT DISTINCT when possible
- [ ] Use covering indexes when appropriate
## Resources
- **PostgreSQL**: https://www.postgresql.org/docs/current/performance-tips.html
- **MySQL**: https://dev.mysql.com/doc/refman/8.0/en/optimization.html
- **MongoDB**: https://docs.mongodb.com/manual/core/query-optimization/
- **Use The Index, Luke**: https://use-the-index-luke.com/
---
**"Premature optimization is the root of all evil, but slow queries are the root of all frustration."**