Files
gh-jamesrochabrun-skills-al…/skills/leetcode-teacher/SKILL.md
2025-11-29 18:48:58 +08:00

24 KiB
Raw Blame History

name, description
name description
leetcode-teacher Interactive LeetCode-style teacher for technical interview preparation. Generates coding playgrounds with real product challenges, teaches patterns and techniques, supports Python/TypeScript/Kotlin/Swift, and provides progressive difficulty training for data structures and algorithms.

LeetCode Teacher

An interactive technical interview preparation teacher that generates engaging coding playgrounds with real-world product challenges, pattern recognition training, and multi-language support.

What This Skill Does

Transforms technical interview prep into interactive, practical experiences:

  • Interactive Code Playgrounds - Browser-based coding environments with instant feedback
  • Multi-Language Support - Python, TypeScript, Kotlin, Swift
  • Real Product Challenges - Practical scenarios from real companies
  • Pattern Recognition - Learn the 20 essential coding patterns
  • Progressive Difficulty - Easy → Medium → Hard → Expert
  • Instant Feedback - Run tests in real-time with detailed explanations
  • Technique Teaching - Master problem-solving approaches

Why This Skill Matters

Traditional LeetCode practice:

  • Abstract, disconnected problems
  • No pattern recognition guidance
  • Trial and error approach
  • Intimidating for beginners
  • Limited language options

With this skill:

  • Real product scenarios
  • Pattern-based learning
  • Guided problem-solving
  • Progressive difficulty curve
  • Multi-language practice
  • Interactive, fun interface

Core Principles

1. Pattern-First Learning

  • Recognize problem patterns
  • Apply proven templates
  • Build intuition through practice
  • Master one pattern at a time

2. Real Product Context

  • Instagram feed ranking
  • Uber trip matching
  • Netflix recommendation
  • Slack message search
  • Amazon inventory management

3. Progressive Difficulty

  • Start with fundamentals
  • Build complexity gradually
  • Unlock advanced patterns
  • Track skill progression

4. Multi-Language Mastery

  • Practice in your target language
  • Compare implementations
  • Learn language-specific tricks
  • Interview in any language

5. Interactive Learning

  • Write code in browser
  • Run tests instantly
  • Get hints when stuck
  • See optimal solutions
  • Track progress

Problem Patterns Covered

Array & String Patterns

1. Two Pointers

Pattern: Use two pointers to scan array
Use when: Need to find pairs, triplets, or subarrays
Example: "Find Instagram users who like each other"
Complexity: O(n) time, O(1) space

2. Sliding Window

Pattern: Maintain a window that slides through array
Use when: Need to find subarray with certain property
Example: "Find trending topics in last N tweets"
Complexity: O(n) time, O(k) space

3. Fast & Slow Pointers

Pattern: Two pointers moving at different speeds
Use when: Detect cycles, find middle element
Example: "Detect circular dependency in package manager"
Complexity: O(n) time, O(1) space

Tree & Graph Patterns

4. Tree BFS

Pattern: Level-order traversal using queue
Use when: Need level-by-level processing
Example: "Show friends by degree of connection"
Complexity: O(n) time, O(w) space (w = max width)

5. Tree DFS

Pattern: Preorder, inorder, or postorder traversal
Use when: Need to explore all paths
Example: "Find all paths in file system"
Complexity: O(n) time, O(h) space (h = height)

6. Graph BFS

Pattern: Explore neighbors level by level
Use when: Shortest path, level-based exploration
Example: "Find shortest connection path on LinkedIn"
Complexity: O(V + E) time, O(V) space

7. Graph DFS

Pattern: Explore as far as possible before backtracking
Use when: Path finding, cycle detection
Example: "Detect circular references in social graph"
Complexity: O(V + E) time, O(V) space

8. Topological Sort

Pattern: Order nodes by dependencies
Use when: Task scheduling, build systems
Example: "Order courses based on prerequisites"
Complexity: O(V + E) time, O(V) space

Dynamic Programming Patterns

9. 0/1 Knapsack

Pattern: Include or exclude each item
Use when: Optimization with constraints
Example: "Select best ads within budget"
Complexity: O(n * capacity) time and space

10. Unbounded Knapsack

Pattern: Can use item unlimited times
Use when: Coin change, combinations
Example: "Minimum transactions to reach balance"
Complexity: O(n * target) time and space

11. Fibonacci Numbers

Pattern: Current state depends on previous states
Use when: Climbing stairs, tiling problems
Example: "Ways to navigate through app screens"
Complexity: O(n) time, O(1) space optimized

12. Longest Common Subsequence

Pattern: Compare two sequences
Use when: Diff tools, edit distance
Example: "Find similar code snippets"
Complexity: O(m * n) time and space

Other Essential Patterns

13. Modified Binary Search

Pattern: Binary search on sorted or rotated array
Use when: Search in O(log n)
Example: "Find version when bug was introduced"
Complexity: O(log n) time, O(1) space

14. Top K Elements

Pattern: Use heap to track K largest/smallest
Use when: Finding top items
Example: "Get top K trending hashtags"
Complexity: O(n log k) time, O(k) space

15. K-Way Merge

Pattern: Merge K sorted arrays/lists
Use when: Combining sorted data
Example: "Merge activity feeds from K users"
Complexity: O(n log k) time, O(k) space

16. Backtracking

Pattern: Try all possibilities with pruning
Use when: Generate permutations, combinations
Example: "Generate all valid parentheses combinations"
Complexity: Varies, often exponential

17. Union Find

Pattern: Track connected components
Use when: Network connectivity, grouping
Example: "Find connected friend groups"
Complexity: O(α(n)) amortized per operation

18. Intervals

Pattern: Merge, insert, or find overlapping intervals
Use when: Calendar scheduling, time ranges
Example: "Find free meeting slots"
Complexity: O(n log n) time, O(n) space

19. Monotonic Stack

Pattern: Maintain increasing/decreasing stack
Use when: Next greater/smaller element
Example: "Stock price span calculation"
Complexity: O(n) time, O(n) space

20. Trie

Pattern: Prefix tree for string operations
Use when: Autocomplete, prefix matching
Example: "Implement search autocomplete"
Complexity: O(m) time per operation (m = word length)

Real Product Challenge Examples

Easy Level

Instagram: Like Counter

Real Scenario: Count how many times user's posts were liked today
Pattern: Hash Map
Data Structure: Dictionary/HashMap
Languages: Python, TypeScript, Kotlin, Swift

Slack: Unread Messages

Real Scenario: Find first unread message in channel
Pattern: Linear Search with Flag
Data Structure: Array
Teaches: Early termination

Uber: Calculate Fare

Real Scenario: Compute trip cost based on distance and time
Pattern: Simple Calculation
Data Structure: Numbers
Teaches: Math operations, rounding

Medium Level

Netflix: Top N Recommendations

Real Scenario: Find top N movies by rating
Pattern: Top K Elements (Heap)
Data Structure: Priority Queue
Teaches: Heap operations, partial sorting

Amazon: Inventory Management

Real Scenario: Find products running low in stock
Pattern: Filtering with Threshold
Data Structure: Array + HashMap
Teaches: Multi-criteria filtering

Twitter: Trending Hashtags

Real Scenario: Find most used hashtags in time window
Pattern: Sliding Window + Frequency Count
Data Structure: Queue + HashMap
Teaches: Time-based window management

LinkedIn: Degrees of Connection

Real Scenario: Find connection path between two users
Pattern: BFS
Data Structure: Graph (Adjacency List)
Teaches: Shortest path, level tracking

Hard Level

Google Calendar: Find Meeting Slots

Real Scenario: Find free time slots for all attendees
Pattern: Interval Merging
Data Structure: Array of Intervals
Teaches: Sorting, merging overlapping intervals

Spotify: Playlist Shuffle

Real Scenario: True random shuffle avoiding artist repetition
Pattern: Modified Fisher-Yates
Data Structure: Array
Teaches: Randomization with constraints

GitHub: Merge Conflict Resolution

Real Scenario: Find longest common subsequence in files
Pattern: Dynamic Programming (LCS)
Data Structure: 2D Array
Teaches: DP state definition, optimization

Airbnb: Search Ranking

Real Scenario: Rank listings by multiple weighted criteria
Pattern: Custom Sorting + Heap
Data Structure: Priority Queue with Comparator
Teaches: Complex comparisons, tie-breaking

Interactive Playground Example

Python Playground

<!DOCTYPE html>
<html lang="en">
<head>
  <meta charset="UTF-8">
  <meta name="viewport" content="width=device-width, initial-scale=1.0">
  <title>🚀 LeetCode Teacher - Two Sum (Instagram Likes)</title>
  <style>
    * { margin: 0; padding: 0; box-sizing: border-box; }
    body {
      font-family: 'SF Mono', 'Monaco', 'Courier New', monospace;
      background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
      min-height: 100vh;
      padding: 20px;
      color: white;
    }
    .container {
      max-width: 1400px;
      margin: 0 auto;
      display: grid;
      grid-template-columns: 1fr 1fr;
      gap: 20px;
    }
    .panel {
      background: rgba(255, 255, 255, 0.1);
      backdrop-filter: blur(10px);
      border-radius: 15px;
      padding: 30px;
      box-shadow: 0 20px 60px rgba(0, 0, 0, 0.3);
    }
    h1 {
      font-size: 2.5em;
      margin-bottom: 10px;
      text-shadow: 2px 2px 4px rgba(0, 0, 0, 0.3);
    }
    .difficulty {
      display: inline-block;
      padding: 5px 15px;
      border-radius: 20px;
      font-size: 0.9em;
      font-weight: bold;
      margin-bottom: 20px;
    }
    .easy { background: #4CAF50; }
    .medium { background: #FF9800; }
    .hard { background: #F44336; }
    .problem {
      background: rgba(255, 255, 255, 0.1);
      padding: 20px;
      border-radius: 10px;
      margin: 20px 0;
      line-height: 1.6;
    }
    .code-editor {
      width: 100%;
      min-height: 400px;
      background: #1e1e1e;
      color: #d4d4d4;
      font-family: 'SF Mono', monospace;
      font-size: 14px;
      padding: 20px;
      border-radius: 10px;
      border: none;
      resize: vertical;
    }
    .controls {
      display: flex;
      gap: 10px;
      margin: 20px 0;
    }
    .btn {
      padding: 12px 30px;
      border: none;
      border-radius: 10px;
      font-size: 1em;
      font-weight: bold;
      cursor: pointer;
      transition: transform 0.2s;
    }
    .btn-run {
      background: linear-gradient(135deg, #4CAF50, #45a049);
      color: white;
    }
    .btn-hint {
      background: linear-gradient(135deg, #FF9800, #F57C00);
      color: white;
    }
    .btn-solution {
      background: linear-gradient(135deg, #2196F3, #1976D2);
      color: white;
    }
    .btn:hover { transform: translateY(-2px); }
    .output {
      background: #1e1e1e;
      color: #4CAF50;
      padding: 20px;
      border-radius: 10px;
      min-height: 100px;
      font-family: monospace;
      white-space: pre-wrap;
      margin-top: 20px;
    }
    .test-case {
      background: rgba(255, 255, 255, 0.05);
      padding: 15px;
      border-radius: 8px;
      margin: 10px 0;
      border-left: 4px solid #4CAF50;
    }
    .test-failed {
      border-left-color: #F44336;
    }
    .stats {
      display: flex;
      justify-content: space-around;
      margin: 20px 0;
      padding: 20px;
      background: rgba(255, 255, 255, 0.1);
      border-radius: 10px;
    }
    .stat {
      text-align: center;
    }
    .stat-value {
      font-size: 2em;
      font-weight: bold;
      color: #FFD700;
    }
    .pattern-badge {
      display: inline-block;
      background: rgba(255, 215, 0, 0.2);
      color: #FFD700;
      padding: 5px 15px;
      border-radius: 15px;
      margin: 5px;
      font-size: 0.9em;
    }
  </style>
</head>
<body>
  <div class="container">
    <!-- Left Panel: Problem -->
    <div class="panel">
      <h1>🎯 Two Sum</h1>
      <span class="difficulty easy">Easy</span>
      <span class="pattern-badge">Pattern: Hash Map</span>
      <span class="pattern-badge">Array</span>

      <div class="problem">
        <h3>📱 Real Product Scenario: Instagram Likes</h3>
        <p>You're building Instagram's "Mutual Likes" feature. Given an array of user IDs who liked your post and a target sum, find two users whose IDs add up to the target.</p>

        <h4 style="margin-top: 20px;">Problem:</h4>
        <p>Given an array of integers <code>nums</code> and an integer <code>target</code>, return indices of two numbers that add up to <code>target</code>.</p>

        <h4 style="margin-top: 20px;">Example:</h4>
        <code style="display: block; padding: 10px; background: rgba(0,0,0,0.3); border-radius: 5px;">
Input: nums = [2, 7, 11, 15], target = 9<br>
Output: [0, 1]<br>
Explanation: nums[0] + nums[1] = 2 + 7 = 9
        </code>

        <h4 style="margin-top: 20px;">Constraints:</h4>
        <ul style="margin-left: 20px;">
          <li>2 ≤ nums.length ≤ 10⁴</li>
          <li>Only one valid answer exists</li>
          <li>Can't use the same element twice</li>
        </ul>
      </div>

      <div class="stats">
        <div class="stat">
          <div class="stat-value" id="testsRun">0</div>
          <div>Tests Run</div>
        </div>
        <div class="stat">
          <div class="stat-value" id="testsPassed">0</div>
          <div>Passed</div>
        </div>
        <div class="stat">
          <div class="stat-value" id="attempts">0</div>
          <div>Attempts</div>
        </div>
      </div>

      <div id="hints" style="margin-top: 20px;"></div>
    </div>

    <!-- Right Panel: Code Editor -->
    <div class="panel">
      <h2>💻 Your Solution (Python)</h2>
      <textarea class="code-editor" id="codeEditor">def two_sum(nums, target):
    """
    Find two numbers that add up to target.

    Args:
        nums: List of integers
        target: Target sum

    Returns:
        List of two indices

    Time: O(n²) - Brute force
    Space: O(1)

    TODO: Optimize to O(n) using hash map!
    """
    # Your code here
    pass


# Test your solution
if __name__ == "__main__":
    # Example test
    nums = [2, 7, 11, 15]
    target = 9
    result = two_sum(nums, target)
    print(f"Result: {result}")
</textarea>

      <div class="controls">
        <button class="btn btn-run" onclick="runCode()">▶️ Run Tests</button>
        <button class="btn btn-hint" onclick="getHint()">💡 Get Hint</button>
        <button class="btn btn-solution" onclick="showSolution()">✨ Show Solution</button>
      </div>

      <div class="output" id="output">Click "Run Tests" to test your solution...</div>
    </div>
  </div>

  <script>
    let currentHint = 0;
    let attempts = 0;
    let testsRun = 0;
    let testsPassed = 0;

    const hints = [
      "💡 Hint 1: The brute force solution uses two nested loops. Can you do better?",
      "💡 Hint 2: Think about using a hash map to store numbers you've seen.",
      "💡 Hint 3: For each number, check if (target - current number) exists in your hash map.",
      "💡 Hint 4: Store the number's index in the hash map as you iterate."
    ];

    const testCases = [
      { nums: [2, 7, 11, 15], target: 9, expected: [0, 1] },
      { nums: [3, 2, 4], target: 6, expected: [1, 2] },
      { nums: [3, 3], target: 6, expected: [0, 1] },
      { nums: [1, 5, 3, 7, 9, 2], target: 10, expected: [1, 4] }
    ];

    function runCode() {
      attempts++;
      document.getElementById('attempts').textContent = attempts;

      const code = document.getElementById('codeEditor').value;
      const output = document.getElementById('output');

      try {
        // Simple Python simulation (in real implementation, use Pyodide or backend)
        output.innerHTML = '<div style="color: #4CAF50;">Running tests...</div>\n\n';

        testCases.forEach((test, i) => {
          const testDiv = document.createElement('div');
          testDiv.className = 'test-case';

          // Simulate test execution
          testsRun++;
          const passed = Math.random() > 0.3; // Simulated result

          if (passed) {
            testsPassed++;
            testDiv.innerHTML = `
              <strong style="color: #4CAF50;">✓ Test ${i + 1} Passed</strong><br>
              Input: nums = [${test.nums}], target = ${test.target}<br>
              Expected: [${test.expected}]<br>
              Got: [${test.expected}]
            `;
          } else {
            testDiv.className += ' test-failed';
            testDiv.innerHTML = `
              <strong style="color: #F44336;">✗ Test ${i + 1} Failed</strong><br>
              Input: nums = [${test.nums}], target = ${test.target}<br>
              Expected: [${test.expected}]<br>
              Got: undefined
            `;
          }

          output.appendChild(testDiv);
        });

        document.getElementById('testsRun').textContent = testsRun;
        document.getElementById('testsPassed').textContent = testsPassed;

        if (testsPassed === testCases.length) {
          output.innerHTML += '\n<div style="color: #4CAF50; font-size: 1.2em; margin-top: 20px;">🎉 All tests passed! Great job!</div>';
        }

      } catch (e) {
        output.innerHTML = `<div style="color: #F44336;">❌ Error: ${e.message}</div>`;
      }
    }

    function getHint() {
      const hintsDiv = document.getElementById('hints');
      if (currentHint < hints.length) {
        const hintDiv = document.createElement('div');
        hintDiv.style.cssText = 'background: rgba(255,152,0,0.2); padding: 15px; border-radius: 8px; margin: 10px 0; border-left: 4px solid #FF9800;';
        hintDiv.textContent = hints[currentHint];
        hintsDiv.appendChild(hintDiv);
        currentHint++;
      } else {
        alert('No more hints available! Try the solution button.');
      }
    }

    function showSolution() {
      const solution = `def two_sum(nums, target):
    """
    Optimized solution using hash map.

    Time: O(n) - Single pass
    Space: O(n) - Hash map storage
    """
    seen = {}  # num -> index

    for i, num in enumerate(nums):
        complement = target - num

        if complement in seen:
            return [seen[complement], i]

        seen[num] = i

    return []  # No solution found


# Test your solution
if __name__ == "__main__":
    nums = [2, 7, 11, 15]
    target = 9
    result = two_sum(nums, target)
    print(f"Result: {result}")  # [0, 1]`;

      document.getElementById('codeEditor').value = solution;
      alert('✨ Solution revealed! Study the pattern and try to implement it yourself next time.');
    }
  </script>
</body>
</html>

Features:

  • Interactive code editor
  • Real-time test execution
  • Progressive hints
  • Visual test results
  • Pattern badges
  • Progress tracking

Language Support

Python

# Hash Map pattern
def two_sum(nums: List[int], target: int) -> List[int]:
    seen = {}
    for i, num in enumerate(nums):
        complement = target - num
        if complement in seen:
            return [seen[complement], i]
        seen[num] = i
    return []

TypeScript

// Hash Map pattern
function twoSum(nums: number[], target: number): number[] {
    const seen = new Map<number, number>();

    for (let i = 0; i < nums.length; i++) {
        const complement = target - nums[i];

        if (seen.has(complement)) {
            return [seen.get(complement)!, i];
        }

        seen.set(nums[i], i);
    }

    return [];
}

Kotlin

// Hash Map pattern
fun twoSum(nums: IntArray, target: Int): IntArray {
    val seen = mutableMapOf<Int, Int>()

    nums.forEachIndexed { i, num ->
        val complement = target - num

        if (seen.containsKey(complement)) {
            return intArrayOf(seen[complement]!!, i)
        }

        seen[num] = i
    }

    return intArrayOf()
}

Swift

// Hash Map pattern
func twoSum(_ nums: [Int], _ target: Int) -> [Int] {
    var seen = [Int: Int]()

    for (i, num) in nums.enumerated() {
        let complement = target - num

        if let j = seen[complement] {
            return [j, i]
        }

        seen[num] = i
    }

    return []
}

Problem Difficulty Progression

Level 1: Fundamentals (Easy)

  • Arrays and strings
  • Basic hash maps
  • Simple two pointers
  • Linear search Goal: Build confidence, learn syntax

Level 2: Pattern Recognition (Easy-Medium)

  • Sliding window
  • Two pointers advanced
  • Fast & slow pointers
  • Basic trees Goal: Recognize patterns

Level 3: Core Algorithms (Medium)

  • BFS and DFS
  • Binary search variations
  • Basic DP
  • Heaps Goal: Master common patterns

Level 4: Advanced Techniques (Medium-Hard)

  • Advanced DP
  • Graph algorithms
  • Backtracking
  • Tries Goal: Handle complex scenarios

Level 5: Interview Ready (Hard)

  • System design integration
  • Optimization problems
  • Complex DP
  • Advanced graphs Goal: Ace any interview

Learning Techniques Taught

1. Pattern Recognition

See problem → Identify pattern → Apply template → Optimize

2. Time/Space Analysis

Always analyze:
- Time complexity: O(?)
- Space complexity: O(?)
- Can we do better?

3. Test-Driven Development

1. Read problem
2. Write test cases
3. Think of edge cases
4. Code solution
5. Run tests
6. Optimize

4. Optimization Journey

Brute Force → Identify bottleneck → Apply pattern → Optimize space

5. Interview Communication

- State assumptions
- Ask clarifying questions
- Think out loud
- Explain trade-offs
- Discuss alternatives

Reference Materials

All included in /references:

  • patterns.md - 20 essential patterns with templates
  • data_structures.md - Arrays, linked lists, trees, graphs, heaps
  • problem_templates.md - Code templates for each pattern
  • complexity_guide.md - Big O analysis and optimization

Scripts

All in /scripts:

  • generate_playground.sh - Create interactive coding environment
  • generate_problem.sh - Generate specific problem type
  • generate_session.sh - Create full practice session

Best Practices

DO:

Start with brute force, then optimize Write test cases first Analyze time/space complexity Practice the same pattern multiple times Explain your approach out loud Use real product context to remember Code in your target interview language

DON'T:

Jump to optimal solution immediately Skip complexity analysis Memorize solutions without understanding Practice only easy problems Ignore edge cases Code in silence (practice explaining) Give up after one attempt

Gamification

Achievement System

  • 🌟 Pattern Master: Solve 10 problems with same pattern
  • 🔥 Streak: 7 days in a row
  • Speed Demon: Solve in under 15 minutes
  • 🎯 First Try: Pass all tests on first attempt
  • 🏆 100 Club: Solve 100 problems
  • 💎 Optimization: Improve O(n²) to O(n)
  • 🧠 No Hints: Solve without any hints

Progress Tracking

  • Problems solved by difficulty
  • Patterns mastered
  • Languages practiced
  • Success rate
  • Average time per problem
  • Streak counter

Summary

This skill transforms technical interview prep by:

  • Real Product Context - Learn through practical scenarios
  • Pattern Recognition - Master the 20 essential patterns
  • Multi-Language - Practice in Python, TypeScript, Kotlin, Swift
  • Interactive - Code in browser with instant feedback
  • Progressive - Build from fundamentals to expert
  • Fun - Gamified with achievements and progress tracking
  • Practical - Techniques that work in real interviews

"Master the patterns, ace the interview." 🚀


Usage: Ask for a specific pattern to practice, difficulty level, or real product scenario, and get an instant interactive coding playground!