4.6 KiB
4.6 KiB
OpenAI GPT Model IDs
List of available model IDs for the OpenAI API.
Last Updated: 2025-11-24
Model List
GPT-5 Series
Released: August 2025
| Model ID | Context | Max Output | Features |
|---|---|---|---|
gpt-5 |
400K | 128K | Full-featured. High-quality general-purpose tasks |
gpt-5-pro |
400K | 272K | Extended reasoning version. Complex enterprise and research use cases |
gpt-5-mini |
400K | 128K | Small high-speed version. Low latency |
gpt-5-nano |
400K | 128K | Ultra-lightweight version. Resource optimized |
Performance: Achieved 94.6% on AIME 2025, 74.9% on SWE-bench Verified Note: Context window is the combined length of input + output
GPT-5.1 Series (Latest Update)
| Model ID | Context | Max Output | Features |
|---|---|---|---|
gpt-5.1 |
128K (ChatGPT) / 400K (API) | 128K | Balance of intelligence and speed |
gpt-5.1-instant |
128K / 400K | 128K | Adaptive reasoning. Balances speed and accuracy |
gpt-5.1-thinking |
128K / 400K | 128K | Adjusts thinking time based on problem complexity |
gpt-5.1-mini |
128K / 400K | 128K | Compact version |
gpt-5.1-codex |
400K | 128K | Code-specialized version (for GitHub Copilot) |
gpt-5.1-codex-mini |
400K | 128K | Code-specialized compact version |
Basic Usage
from langchain_openai import ChatOpenAI
# Latest: GPT-5
llm = ChatOpenAI(model="gpt-5")
# Latest update: GPT-5.1
llm = ChatOpenAI(model="gpt-5.1")
# High performance: GPT-5 Pro
llm = ChatOpenAI(model="gpt-5-pro")
# Cost-conscious: Compact version
llm = ChatOpenAI(model="gpt-5-mini")
# Ultra-lightweight
llm = ChatOpenAI(model="gpt-5-nano")
Environment Variables
export OPENAI_API_KEY="sk-..."
Model Selection Guide
| Use Case | Recommended Model |
|---|---|
| Maximum Performance | gpt-5-pro |
| General-Purpose Tasks | gpt-5 or gpt-5.1 |
| Cost-Conscious | gpt-5-mini |
| Ultra-Lightweight | gpt-5-nano |
| Adaptive Reasoning | gpt-5.1-instant or gpt-5.1-thinking |
| Code Generation | gpt-5.1-codex or gpt-5 |
GPT-5 Features
1. Large Context Window
GPT-5 series has a 400K token context window:
llm = ChatOpenAI(
model="gpt-5",
max_tokens=128000 # Max output: 128K
)
# GPT-5 Pro has a maximum output of 272K
llm_pro = ChatOpenAI(
model="gpt-5-pro",
max_tokens=272000
)
Use Cases:
- Batch processing of long documents
- Analysis of large codebases
- Maintaining long conversation histories
2. Software On-Demand Generation
llm = ChatOpenAI(model="gpt-5")
response = llm.invoke("Generate a web application")
3. Advanced Reasoning Capabilities
Performance Metrics:
- AIME 2025: 94.6%
- SWE-bench Verified: 74.9%
- Aider Polyglot: 88%
- MMMU: 84.2%
4. GPT-5.1 Adaptive Reasoning
Automatically adjusts thinking time based on problem complexity:
# Balance between speed and accuracy
llm = ChatOpenAI(model="gpt-5.1-instant")
# Tasks requiring deep thought
llm = ChatOpenAI(model="gpt-5.1-thinking")
Compaction Technology: GPT-5.1 introduces technology that effectively handles longer contexts.
5. GPT-5 Pro - Extended Reasoning
Advanced reasoning for enterprise and research environments. Maximum output of 272K tokens:
llm = ChatOpenAI(
model="gpt-5-pro",
max_tokens=272000 # Larger output possible than other models
)
# More detailed and reliable responses
6. Code-Specialized Models
# Used in GitHub Copilot
llm = ChatOpenAI(model="gpt-5.1-codex")
# Compact version
llm = ChatOpenAI(model="gpt-5.1-codex-mini")
Multimodal Support
GPT-5 supports images and audio (see Advanced Features for details).
JSON Mode
When structured output is needed:
llm = ChatOpenAI(
model="gpt-5",
model_kwargs={"response_format": {"type": "json_object"}}
)
Retrieving Model List
from openai import OpenAI
import os
client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
models = client.models.list()
for model in models:
if model.id.startswith("gpt-5"):
print(model.id)
Detailed Documentation
For advanced settings, vision features, and Azure OpenAI: