Files
gh-hiroshi75-protografico-p…/skills/langgraph-master/06_llm_model_ids_openai.md
2025-11-29 18:45:58 +08:00

4.6 KiB

OpenAI GPT Model IDs

List of available model IDs for the OpenAI API.

Last Updated: 2025-11-24

Model List

GPT-5 Series

Released: August 2025

Model ID Context Max Output Features
gpt-5 400K 128K Full-featured. High-quality general-purpose tasks
gpt-5-pro 400K 272K Extended reasoning version. Complex enterprise and research use cases
gpt-5-mini 400K 128K Small high-speed version. Low latency
gpt-5-nano 400K 128K Ultra-lightweight version. Resource optimized

Performance: Achieved 94.6% on AIME 2025, 74.9% on SWE-bench Verified Note: Context window is the combined length of input + output

GPT-5.1 Series (Latest Update)

Model ID Context Max Output Features
gpt-5.1 128K (ChatGPT) / 400K (API) 128K Balance of intelligence and speed
gpt-5.1-instant 128K / 400K 128K Adaptive reasoning. Balances speed and accuracy
gpt-5.1-thinking 128K / 400K 128K Adjusts thinking time based on problem complexity
gpt-5.1-mini 128K / 400K 128K Compact version
gpt-5.1-codex 400K 128K Code-specialized version (for GitHub Copilot)
gpt-5.1-codex-mini 400K 128K Code-specialized compact version

Basic Usage

from langchain_openai import ChatOpenAI

# Latest: GPT-5
llm = ChatOpenAI(model="gpt-5")

# Latest update: GPT-5.1
llm = ChatOpenAI(model="gpt-5.1")

# High performance: GPT-5 Pro
llm = ChatOpenAI(model="gpt-5-pro")

# Cost-conscious: Compact version
llm = ChatOpenAI(model="gpt-5-mini")

# Ultra-lightweight
llm = ChatOpenAI(model="gpt-5-nano")

Environment Variables

export OPENAI_API_KEY="sk-..."

Model Selection Guide

Use Case Recommended Model
Maximum Performance gpt-5-pro
General-Purpose Tasks gpt-5 or gpt-5.1
Cost-Conscious gpt-5-mini
Ultra-Lightweight gpt-5-nano
Adaptive Reasoning gpt-5.1-instant or gpt-5.1-thinking
Code Generation gpt-5.1-codex or gpt-5

GPT-5 Features

1. Large Context Window

GPT-5 series has a 400K token context window:

llm = ChatOpenAI(
    model="gpt-5",
    max_tokens=128000  # Max output: 128K
)

# GPT-5 Pro has a maximum output of 272K
llm_pro = ChatOpenAI(
    model="gpt-5-pro",
    max_tokens=272000
)

Use Cases:

  • Batch processing of long documents
  • Analysis of large codebases
  • Maintaining long conversation histories

2. Software On-Demand Generation

llm = ChatOpenAI(model="gpt-5")
response = llm.invoke("Generate a web application")

3. Advanced Reasoning Capabilities

Performance Metrics:

  • AIME 2025: 94.6%
  • SWE-bench Verified: 74.9%
  • Aider Polyglot: 88%
  • MMMU: 84.2%

4. GPT-5.1 Adaptive Reasoning

Automatically adjusts thinking time based on problem complexity:

# Balance between speed and accuracy
llm = ChatOpenAI(model="gpt-5.1-instant")

# Tasks requiring deep thought
llm = ChatOpenAI(model="gpt-5.1-thinking")

Compaction Technology: GPT-5.1 introduces technology that effectively handles longer contexts.

5. GPT-5 Pro - Extended Reasoning

Advanced reasoning for enterprise and research environments. Maximum output of 272K tokens:

llm = ChatOpenAI(
    model="gpt-5-pro",
    max_tokens=272000  # Larger output possible than other models
)
# More detailed and reliable responses

6. Code-Specialized Models

# Used in GitHub Copilot
llm = ChatOpenAI(model="gpt-5.1-codex")

# Compact version
llm = ChatOpenAI(model="gpt-5.1-codex-mini")

Multimodal Support

GPT-5 supports images and audio (see Advanced Features for details).

JSON Mode

When structured output is needed:

llm = ChatOpenAI(
    model="gpt-5",
    model_kwargs={"response_format": {"type": "json_object"}}
)

Retrieving Model List

from openai import OpenAI
import os

client = OpenAI(api_key=os.getenv("OPENAI_API_KEY"))
models = client.models.list()

for model in models:
    if model.id.startswith("gpt-5"):
        print(model.id)

Detailed Documentation

For advanced settings, vision features, and Azure OpenAI: