Files
gh-hiroshi75-protografico-p…/skills/fine-tune/workflow.md
2025-11-29 18:45:58 +08:00

128 lines
6.9 KiB
Markdown
Raw Blame History

This file contains ambiguous Unicode characters
This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.
# Fine-Tuning Workflow Details
Detailed workflow and practical guidelines for executing fine-tuning of LangGraph applications.
**💡 Tip**: For concrete code examples and templates you can copy and paste, refer to [examples.md](examples.md).
## 📋 Workflow Overview
```
┌─────────────────────────────────────────────────────────────┐
│ Phase 1: Preparation and Analysis │
├─────────────────────────────────────────────────────────────┤
│ 1. Read fine-tune.md → Understand goals and criteria │
│ 2. Identify optimization targets with Serena → List LLM nodes│
│ 3. Create optimization list → Assess improvement potential │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Phase 2: Baseline Evaluation │
├─────────────────────────────────────────────────────────────┤
│ 4. Prepare evaluation environment → Test cases, scripts │
│ 5. Measure baseline → Run 3-5 times, collect statistics │
│ 6. Analyze results → Identify issues, assess improvement │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Phase 3: Iterative Improvement (Iteration Loop) │
├─────────────────────────────────────────────────────────────┤
│ 7. Prioritize → Select most effective improvement area │
│ 8. Implement improvements → Optimize prompts, adjust params │
│ 9. Post-improvement evaluation → Re-evaluate same conditions│
│ 10. Compare results → Measure improvement, decide next step │
│ 11. Continue decision → Goal met? Yes → Phase 4 / No → Next │
└─────────────────────────────────────────────────────────────┘
┌─────────────────────────────────────────────────────────────┐
│ Phase 4: Completion and Documentation │
├─────────────────────────────────────────────────────────────┤
│ 12. Create final evaluation report → Summary of improvements│
│ 13. Commit code → Version control and documentation update │
└─────────────────────────────────────────────────────────────┘
```
## 📚 Phase-by-Phase Detailed Guide
### [Phase 1: Preparation and Analysis](./workflow_phase1.md)
Clarify optimization direction and identify targets for improvement:
- **Step 1**: Read and understand fine-tune.md
- **Step 2**: Identify optimization targets with Serena MCP
- **Step 3**: Create optimization target list
**Time Required**: 30 minutes - 1 hour
### [Phase 2: Baseline Evaluation](./workflow_phase2.md)
Quantitatively measure current performance:
- **Step 4**: Prepare evaluation environment
- **Step 5**: Measure baseline (3-5 runs)
- **Step 6**: Analyze baseline results
**Time Required**: 1-2 hours
### [Phase 3: Iterative Improvement](./workflow_phase3.md)
Data-driven, incremental prompt optimization:
- **Step 7**: Prioritization
- **Step 8**: Implement improvements
- **Step 9**: Post-improvement evaluation
- **Step 10**: Compare results
- **Step 11**: Continue decision
**Time Required**: 1-2 hours per iteration × number of iterations (typically 3-5)
### [Phase 4: Completion and Documentation](./workflow_phase4.md)
Record final results and commit code:
- **Step 12**: Create final evaluation report
- **Step 13**: Commit code and update documentation
**Time Required**: 30 minutes - 1 hour
## 🎯 Workflow Execution Points
### For First-Time Fine-Tuning
1. **Start from Phase 1 in order**: Execute all phases without skipping
2. **Create documentation**: Record results from each phase
3. **Start small**: Experiment with a small number of test cases initially
### Continuous Fine-Tuning
1. **Start from Phase 2**: Measure new baseline
2. **Repeat Phase 3**: Continuous improvement cycle
3. **Consider automation**: Build evaluation pipeline
## 📊 Principles for Success
1. **Data-Driven**: Base all decisions on measurement results
2. **Incremental Improvement**: One change at a time, measure, verify
3. **Documentation**: Record results and learnings from each phase
4. **Statistical Verification**: Run multiple times to confirm significance
## 🔗 Related Documents
- **[Example Collection](./examples.md)** - Code examples and templates for each phase
- **[Evaluation Methods](./evaluation.md)** - Details on evaluation metrics and statistical analysis
- **[Prompt Optimization](./prompt_optimization.md)** - Detailed optimization techniques
- **[SKILL.md](./SKILL.md)** - Overview of the Fine-tune skill
## 💡 Troubleshooting
### Cannot find optimization targets in Phase 1
→ Check search patterns in [workflow_phase1.md#step-2](./workflow_phase1.md#step-2-identify-optimization-targets-with-serena-mcp)
### Evaluation script fails in Phase 2
→ Check checklist in [workflow_phase2.md#step-4](./workflow_phase2.md#step-4-prepare-evaluation-environment)
### No improvement effect in Phase 3
→ Review priority matrix in [workflow_phase3.md#step-7](./workflow_phase3.md#step-7-prioritization)
### Report creation takes too long in Phase 4
→ Utilize templates in [workflow_phase4.md#step-12](./workflow_phase4.md#step-12-create-final-evaluation-report)
---
Following this workflow enables:
- ✅ Systematic fine-tuning process execution
- ✅ Data-driven decision making
- ✅ Continuous improvement and verification
- ✅ Complete documentation and traceability