Files
gh-hiroshi75-protografico-p…/skills/fine-tune/examples_phase3.md
2025-11-29 18:45:58 +08:00

231 lines
6.8 KiB
Markdown

# Phase 3: Iterative Improvement Examples
Examples of before/after prompt comparisons and result reports.
**📋 Related Documentation**: [Examples Home](./examples.md) | [Workflow Phase 3](./workflow_phase3.md) | [Prompt Optimization](./prompt_optimization.md)
---
## Phase 3: Iterative Improvement Examples
### Example 3.1: Before/After Prompt Comparison
**Node**: analyze_intent
#### Before (Baseline)
```python
def analyze_intent(state: GraphState) -> GraphState:
llm = ChatAnthropic(
model="claude-3-5-sonnet-20241022",
temperature=1.0
)
messages = [
SystemMessage(content="You are an intent analyzer. Analyze user input."),
HumanMessage(content=f"Analyze: {state['user_input']}")
]
response = llm.invoke(messages)
state["intent"] = response.content
return state
```
**Issues**:
- Ambiguous instructions
- No few-shot examples
- Free text output
- High temperature
**Result**: Accuracy 75%
#### After (Iteration 1)
```python
def analyze_intent(state: GraphState) -> GraphState:
llm = ChatAnthropic(
model="claude-3-5-sonnet-20241022",
temperature=0.3 # Lower temperature for classification tasks
)
# Clear classification categories and few-shot examples
system_prompt = """You are an intent classifier for a customer support chatbot.
Classify user input into one of these categories:
- "product_inquiry": Questions about products or services
- "technical_support": Technical issues or troubleshooting
- "billing": Payment, invoicing, or billing questions
- "general": General questions or chitchat
Output ONLY a valid JSON object with this structure:
{
"intent": "<category>",
"confidence": <0.0-1.0>,
"reasoning": "<brief explanation>"
}
Examples:
Input: "How much does the premium plan cost?"
Output: {"intent": "product_inquiry", "confidence": 0.95, "reasoning": "Question about product pricing"}
Input: "I can't log into my account"
Output: {"intent": "technical_support", "confidence": 0.9, "reasoning": "Authentication issue"}
Input: "Why was I charged twice?"
Output: {"intent": "billing", "confidence": 0.95, "reasoning": "Question about billing charges"}
Input: "Hello, how are you?"
Output: {"intent": "general", "confidence": 0.85, "reasoning": "General greeting"}
Input: "What's the return policy?"
Output: {"intent": "product_inquiry", "confidence": 0.9, "reasoning": "Question about product policy"}
"""
messages = [
SystemMessage(content=system_prompt),
HumanMessage(content=f"Input: {state['user_input']}\nOutput:")
]
response = llm.invoke(messages)
# JSON parsing (with error handling)
try:
intent_data = json.loads(response.content)
state["intent"] = intent_data["intent"]
state["confidence"] = intent_data["confidence"]
except json.JSONDecodeError:
# Fallback
state["intent"] = "general"
state["confidence"] = 0.5
return state
```
**Improvements**:
- ✅ temperature: 1.0 → 0.3
- ✅ Clear classification categories (4 intents)
- ✅ Few-shot examples (5 added)
- ✅ JSON output format (structured output)
- ✅ Error handling (fallback for JSON parsing failures)
**Result**: Accuracy 86% (+11%)
### Example 3.2: Prioritization Matrix
```markdown
## Improvement Prioritization Matrix
| Node | Impact | Feasibility | Implementation Cost | Total Score | Priority |
| ----------------- | ------------ | ------------ | ------------------- | ----------- | -------- |
| analyze_intent | ⭐⭐⭐⭐⭐ | ⭐⭐⭐⭐⭐ | ⭐⭐⭐⭐ | 14/15 | 1st |
| generate_response | ⭐⭐⭐⭐ | ⭐⭐⭐⭐ | ⭐⭐⭐⭐ | 12/15 | 2nd |
| retrieve_context | ⭐⭐ | ⭐⭐⭐ | ⭐⭐⭐ | 8/15 | 3rd |
### Detailed Analysis
#### 1st: analyze_intent Node
- **Impact**: ⭐⭐⭐⭐⭐
- Direct impact on Accuracy (accounts for 60% of -15% gap)
- Also affects downstream nodes (chain errors from misclassification)
- **Feasibility**: ⭐⭐⭐⭐⭐
- Improvement expected from few-shot examples
- Similar cases show +10-15% improvement
- **Implementation Cost**: ⭐⭐⭐⭐
- Implementation time: 30-60 minutes
- Testing time: 30 minutes
- Risk: Low
**Iteration 1 target**: analyze_intent node
#### 2nd: generate_response Node
- **Impact**: ⭐⭐⭐⭐
- Main contributor to Latency and Cost (over 70% of total)
- Small direct impact on Accuracy
- **Feasibility**: ⭐⭐⭐⭐
- max_tokens limit ensures improvement
- Quality can be maintained with conciseness instructions
- **Implementation Cost**: ⭐⭐⭐⭐
- Implementation time: 20-30 minutes
- Testing time: 30 minutes
- Risk: Low
**Iteration 2 target**: generate_response node
```
### Example 3.3: Iteration Results Report
```markdown
# Iteration 1 Evaluation Results
Execution Date/Time: 2024-11-24 12:00:00
Changes: analyze_intent node optimization
## Result Comparison
| Metric | Baseline | Iteration 1 | Change | Change Rate | Target | Achievement |
| ------------ | -------- | ----------- | ---------- | ----------- | ------ | ----------- |
| **Accuracy** | 75.0% | **86.0%** | **+11.0%** | +14.7% | 90.0% | 95.6% |
| **Latency** | 2.5s | 2.4s | -0.1s | -4.0% | 2.0s | 80.0% |
| **Cost/req** | $0.015 | $0.014 | -$0.001 | -6.7% | $0.010 | 71.4% |
## Detailed Analysis
### Accuracy Improvement
- **Improvement**: +11.0% (75.0% → 86.0%)
- **Remaining gap**: 4.0% (Target 90.0%)
- **Improved cases**: Intent classification errors reduced from 12 → 3 cases
- **Still needs improvement**: Context understanding cases (5 cases)
### Slight Latency Improvement
- **Improvement**: -0.1s (2.5s → 2.4s)
- **Main factor**: analyze_intent output became more concise due to lower temperature
- **Remaining bottleneck**: generate_response (average 1.8s)
### Slight Cost Reduction
- **Reduction**: -$0.001 (6.7% reduction)
- **Factor**: analyze_intent output token reduction
- **Main cost**: generate_response still accounts for 73%
## Statistical Significance
- **t-test**: p < 0.01 ✅ (statistically significant)
- **Effect size**: Cohen's d = 2.3 (large effect)
- **Confidence interval**: [83.9%, 88.1%] (95% CI)
## Next Iteration Strategy
### Priority 1: Optimize generate_response
- **Goal**: Latency from 1.8s → 1.4s, Cost from $0.011 → $0.007
- **Approach**:
1. Add conciseness instructions
2. Limit max_tokens to 500
3. Adjust temperature from 0.7 → 0.5
### Priority 2: Final 4% Accuracy improvement
- **Goal**: 86.0% → 90.0% or higher
- **Approach**: Improve context understanding (retrieve_context node)
## Decision
**Continue** → Proceed to Iteration 2
Reasons:
- Accuracy improved significantly but still hasn't reached target
- Latency and Cost still have room for improvement
- Clear improvement strategy is in place
```
---