6.7 KiB
6.7 KiB
Phase 3: Iterative Improvement
Phase for data-driven, incremental prompt optimization.
Time Required: 1-2 hours per iteration × number of iterations (typically 3-5)
📋 Related Documents: Overall Workflow | Prompt Optimization
Phase 3: Iterative Improvement
Iteration Cycle
Execute the following in each iteration:
- Prioritization (Step 7)
- Implement Improvements (Step 8)
- Post-Improvement Evaluation (Step 9)
- Compare Results (Step 10)
- Continue Decision (Step 11)
Step 7: Prioritization
Decision Criteria:
- Impact on goal achievement
- Feasibility of improvement
- Implementation cost
Priority Matrix:
## Improvement Priority Matrix
| Node | Impact | Feasibility | Impl Cost | Total Score | Priority |
|------|--------|-------------|-----------|-------------|----------|
| analyze_intent | ⭐⭐⭐⭐⭐ | ⭐⭐⭐⭐⭐ | ⭐⭐⭐⭐ | 14/15 | 1st |
| generate_response | ⭐⭐⭐⭐ | ⭐⭐⭐⭐ | ⭐⭐⭐⭐ | 12/15 | 2nd |
| retrieve_context | ⭐⭐ | ⭐⭐⭐ | ⭐⭐⭐ | 8/15 | 3rd |
**Iteration 1 Target**: analyze_intent node
Step 8: Implement Improvements
Pre-Improvement Prompt (src/nodes/analyzer.py):
# Before
def analyze_intent(state: GraphState) -> GraphState:
llm = ChatAnthropic(
model="claude-3-5-sonnet-20241022",
temperature=1.0
)
messages = [
SystemMessage(content="You are an intent analyzer. Analyze user input."),
HumanMessage(content=f"Analyze: {state['user_input']}")
]
response = llm.invoke(messages)
state["intent"] = response.content
return state
Post-Improvement Prompt:
# After - Iteration 1
def analyze_intent(state: GraphState) -> GraphState:
llm = ChatAnthropic(
model="claude-3-5-sonnet-20241022",
temperature=0.3 # Lower temperature for classification tasks
)
# Clear classification categories and few-shot examples
system_prompt = """You are an intent classifier for a customer support chatbot.
Classify user input into one of these categories:
- "product_inquiry": Questions about products or services
- "technical_support": Technical issues or troubleshooting
- "billing": Payment, invoicing, or billing questions
- "general": General questions or chitchat
Output ONLY a valid JSON object with this structure:
{
"intent": "<category>",
"confidence": <0.0-1.0>,
"reasoning": "<brief explanation>"
}
Examples:
Input: "How much does the premium plan cost?"
Output: {"intent": "product_inquiry", "confidence": 0.95, "reasoning": "Question about product pricing"}
Input: "I can't log into my account"
Output: {"intent": "technical_support", "confidence": 0.9, "reasoning": "Authentication issue"}
Input: "Why was I charged twice?"
Output: {"intent": "billing", "confidence": 0.95, "reasoning": "Question about billing charges"}
Input: "Hello, how are you?"
Output: {"intent": "general", "confidence": 0.85, "reasoning": "General greeting"}
Input: "What's the return policy?"
Output: {"intent": "product_inquiry", "confidence": 0.9, "reasoning": "Question about product policy"}
"""
messages = [
SystemMessage(content=system_prompt),
HumanMessage(content=f"Input: {state['user_input']}\nOutput:")
]
response = llm.invoke(messages)
# JSON parsing (with error handling)
try:
intent_data = json.loads(response.content)
state["intent"] = intent_data["intent"]
state["confidence"] = intent_data["confidence"]
except json.JSONDecodeError:
# Fallback
state["intent"] = "general"
state["confidence"] = 0.5
return state
Summary of Changes:
- ✅ temperature: 1.0 → 0.3 (appropriate for classification tasks)
- ✅ Clear classification categories (4 intents)
- ✅ Few-shot examples (added 5)
- ✅ JSON output format (structured output)
- ✅ Error handling (fallback for JSON parse failures)
Step 9: Post-Improvement Evaluation
Execution:
# Execute post-improvement evaluation under same conditions
./evaluation_after_iteration1.sh
Step 10: Compare Results
Comparison Report Example:
# Iteration 1 Evaluation Results
Execution Date: 2024-11-24 12:00:00
Changes: Optimization of analyze_intent node
## Results Comparison
| Metric | Baseline | Iteration 1 | Change | % Change | Target | Achievement |
|--------|----------|-------------|--------|----------|--------|-------------|
| **Accuracy** | 75.0% | **86.0%** | **+11.0%** | +14.7% | 90.0% | 95.6% |
| **Latency** | 2.5s | 2.4s | -0.1s | -4.0% | 2.0s | 80.0% |
| **Cost/req** | $0.015 | $0.014 | -$0.001 | -6.7% | $0.010 | 71.4% |
## Detailed Analysis
### Accuracy Improvement
- **Improvement**: +11.0% (75.0% → 86.0%)
- **Remaining gap**: 4.0% (target 90.0%)
- **Improved cases**: Intent classification errors reduced from 12 → 3 cases
- **Still needs improvement**: Context understanding deficiency cases (5 cases)
### Slight Latency Improvement
- **Improvement**: -0.1s (2.5s → 2.4s)
- **Main factor**: Lower temperature in analyze_intent made output more concise
- **Remaining bottleneck**: generate_response (avg 1.8s)
### Slight Cost Reduction
- **Reduction**: -$0.001 (6.7% reduction)
- **Factor**: Reduced output tokens in analyze_intent
- **Main cost**: generate_response still accounts for 73%
## Next Iteration Strategy
### Priority 1: Optimize generate_response
- **Goal**: Latency 1.8s → 1.4s, Cost $0.011 → $0.007
- **Approach**:
1. Add conciseness instructions
2. Limit max_tokens to 500
3. Adjust temperature from 0.7 → 0.5
### Priority 2: Final 4% accuracy improvement
- **Goal**: 86.0% → 90.0% or higher
- **Approach**: Improve context understanding (retrieve_context node)
## Decision
✅ Continue → Proceed to Iteration 2
Step 11: Continue Decision
Decision Criteria:
def should_continue_iteration(results: Dict, goals: Dict) -> bool:
"""Determine if iteration should continue"""
all_goals_met = True
for metric, goal in goals.items():
if metric == "accuracy":
if results[metric] < goal:
all_goals_met = False
elif metric in ["latency", "cost"]:
if results[metric] > goal:
all_goals_met = False
return not all_goals_met
# Example
goals = {"accuracy": 90.0, "latency": 2.0, "cost": 0.010}
results = {"accuracy": 86.0, "latency": 2.4, "cost": 0.014}
if should_continue_iteration(results, goals):
print("Proceed to next iteration")
else:
print("Goals achieved - Move to Phase 4")
Iteration Limit:
- Recommended: 3-5 iterations
- Reason: Beyond this, law of diminishing returns likely applies
- Exception: Critical applications may require 10+ iterations