Files
2025-11-29 18:45:53 +08:00

6.9 KiB
Raw Permalink Blame History

Fine-Tuning Workflow Details

Detailed workflow and practical guidelines for executing fine-tuning of LangGraph applications.

💡 Tip: For concrete code examples and templates you can copy and paste, refer to examples.md.

📋 Workflow Overview

┌─────────────────────────────────────────────────────────────┐
│ Phase 1: Preparation and Analysis                           │
├─────────────────────────────────────────────────────────────┤
│ 1. Read fine-tune.md → Understand goals and criteria        │
│ 2. Identify optimization targets with Serena → List LLM nodes│
│ 3. Create optimization list → Assess improvement potential  │
└─────────────────────────────────────────────────────────────┘
                            ↓
┌─────────────────────────────────────────────────────────────┐
│ Phase 2: Baseline Evaluation                                │
├─────────────────────────────────────────────────────────────┤
│ 4. Prepare evaluation environment → Test cases, scripts     │
│ 5. Measure baseline → Run 3-5 times, collect statistics     │
│ 6. Analyze results → Identify issues, assess improvement    │
└─────────────────────────────────────────────────────────────┘
                            ↓
┌─────────────────────────────────────────────────────────────┐
│ Phase 3: Iterative Improvement (Iteration Loop)             │
├─────────────────────────────────────────────────────────────┤
│ 7. Prioritize → Select most effective improvement area      │
│ 8. Implement improvements → Optimize prompts, adjust params │
│ 9. Post-improvement evaluation → Re-evaluate same conditions│
│ 10. Compare results → Measure improvement, decide next step │
│ 11. Continue decision → Goal met? Yes → Phase 4 / No → Next │
└─────────────────────────────────────────────────────────────┘
                            ↓
┌─────────────────────────────────────────────────────────────┐
│ Phase 4: Completion and Documentation                       │
├─────────────────────────────────────────────────────────────┤
│ 12. Create final evaluation report → Summary of improvements│
│ 13. Commit code → Version control and documentation update  │
└─────────────────────────────────────────────────────────────┘

📚 Phase-by-Phase Detailed Guide

Phase 1: Preparation and Analysis

Clarify optimization direction and identify targets for improvement:

  • Step 1: Read and understand fine-tune.md
  • Step 2: Identify optimization targets with Serena MCP
  • Step 3: Create optimization target list

Time Required: 30 minutes - 1 hour

Phase 2: Baseline Evaluation

Quantitatively measure current performance:

  • Step 4: Prepare evaluation environment
  • Step 5: Measure baseline (3-5 runs)
  • Step 6: Analyze baseline results

Time Required: 1-2 hours

Phase 3: Iterative Improvement

Data-driven, incremental prompt optimization:

  • Step 7: Prioritization
  • Step 8: Implement improvements
  • Step 9: Post-improvement evaluation
  • Step 10: Compare results
  • Step 11: Continue decision

Time Required: 1-2 hours per iteration × number of iterations (typically 3-5)

Phase 4: Completion and Documentation

Record final results and commit code:

  • Step 12: Create final evaluation report
  • Step 13: Commit code and update documentation

Time Required: 30 minutes - 1 hour

🎯 Workflow Execution Points

For First-Time Fine-Tuning

  1. Start from Phase 1 in order: Execute all phases without skipping
  2. Create documentation: Record results from each phase
  3. Start small: Experiment with a small number of test cases initially

Continuous Fine-Tuning

  1. Start from Phase 2: Measure new baseline
  2. Repeat Phase 3: Continuous improvement cycle
  3. Consider automation: Build evaluation pipeline

📊 Principles for Success

  1. Data-Driven: Base all decisions on measurement results
  2. Incremental Improvement: One change at a time, measure, verify
  3. Documentation: Record results and learnings from each phase
  4. Statistical Verification: Run multiple times to confirm significance

💡 Troubleshooting

Cannot find optimization targets in Phase 1

→ Check search patterns in workflow_phase1.md#step-2

Evaluation script fails in Phase 2

→ Check checklist in workflow_phase2.md#step-4

No improvement effect in Phase 3

→ Review priority matrix in workflow_phase3.md#step-7

Report creation takes too long in Phase 4

→ Utilize templates in workflow_phase4.md#step-12


Following this workflow enables:

  • Systematic fine-tuning process execution
  • Data-driven decision making
  • Continuous improvement and verification
  • Complete documentation and traceability