Files
gh-hermeticormus-hermetic-l…/skills/rag-implementation/SKILL.md
2025-11-29 18:44:49 +08:00

404 lines
11 KiB
Markdown

---
name: rag-implementation
description: Build Retrieval-Augmented Generation (RAG) systems for LLM applications with vector databases and semantic search. Use when implementing knowledge-grounded AI, building document Q&A systems, or integrating LLMs with external knowledge bases.
---
# RAG Implementation
Master Retrieval-Augmented Generation (RAG) to build LLM applications that provide accurate, grounded responses using external knowledge sources.
## When to Use This Skill
- Building Q&A systems over proprietary documents
- Creating chatbots with current, factual information
- Implementing semantic search with natural language queries
- Reducing hallucinations with grounded responses
- Enabling LLMs to access domain-specific knowledge
- Building documentation assistants
- Creating research tools with source citation
## Core Components
### 1. Vector Databases
**Purpose**: Store and retrieve document embeddings efficiently
**Options:**
- **Pinecone**: Managed, scalable, fast queries
- **Weaviate**: Open-source, hybrid search
- **Milvus**: High performance, on-premise
- **Chroma**: Lightweight, easy to use
- **Qdrant**: Fast, filtered search
- **FAISS**: Meta's library, local deployment
### 2. Embeddings
**Purpose**: Convert text to numerical vectors for similarity search
**Models:**
- **text-embedding-ada-002** (OpenAI): General purpose, 1536 dims
- **all-MiniLM-L6-v2** (Sentence Transformers): Fast, lightweight
- **e5-large-v2**: High quality, multilingual
- **Instructor**: Task-specific instructions
- **bge-large-en-v1.5**: SOTA performance
### 3. Retrieval Strategies
**Approaches:**
- **Dense Retrieval**: Semantic similarity via embeddings
- **Sparse Retrieval**: Keyword matching (BM25, TF-IDF)
- **Hybrid Search**: Combine dense + sparse
- **Multi-Query**: Generate multiple query variations
- **HyDE**: Generate hypothetical documents
### 4. Reranking
**Purpose**: Improve retrieval quality by reordering results
**Methods:**
- **Cross-Encoders**: BERT-based reranking
- **Cohere Rerank**: API-based reranking
- **Maximal Marginal Relevance (MMR)**: Diversity + relevance
- **LLM-based**: Use LLM to score relevance
## Quick Start
```python
from langchain.document_loaders import DirectoryLoader
from langchain.text_splitters import RecursiveCharacterTextSplitter
from langchain.embeddings import OpenAIEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from langchain.llms import OpenAI
# 1. Load documents
loader = DirectoryLoader('./docs', glob="**/*.txt")
documents = loader.load()
# 2. Split into chunks
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len
)
chunks = text_splitter.split_documents(documents)
# 3. Create embeddings and vector store
embeddings = OpenAIEmbeddings()
vectorstore = Chroma.from_documents(chunks, embeddings)
# 4. Create retrieval chain
qa_chain = RetrievalQA.from_chain_type(
llm=OpenAI(),
chain_type="stuff",
retriever=vectorstore.as_retriever(search_kwargs={"k": 4}),
return_source_documents=True
)
# 5. Query
result = qa_chain({"query": "What are the main features?"})
print(result['result'])
print(result['source_documents'])
```
## Advanced RAG Patterns
### Pattern 1: Hybrid Search
```python
from langchain.retrievers import BM25Retriever, EnsembleRetriever
# Sparse retriever (BM25)
bm25_retriever = BM25Retriever.from_documents(chunks)
bm25_retriever.k = 5
# Dense retriever (embeddings)
embedding_retriever = vectorstore.as_retriever(search_kwargs={"k": 5})
# Combine with weights
ensemble_retriever = EnsembleRetriever(
retrievers=[bm25_retriever, embedding_retriever],
weights=[0.3, 0.7]
)
```
### Pattern 2: Multi-Query Retrieval
```python
from langchain.retrievers.multi_query import MultiQueryRetriever
# Generate multiple query perspectives
retriever = MultiQueryRetriever.from_llm(
retriever=vectorstore.as_retriever(),
llm=OpenAI()
)
# Single query → multiple variations → combined results
results = retriever.get_relevant_documents("What is the main topic?")
```
### Pattern 3: Contextual Compression
```python
from langchain.retrievers import ContextualCompressionRetriever
from langchain.retrievers.document_compressors import LLMChainExtractor
compressor = LLMChainExtractor.from_llm(llm)
compression_retriever = ContextualCompressionRetriever(
base_compressor=compressor,
base_retriever=vectorstore.as_retriever()
)
# Returns only relevant parts of documents
compressed_docs = compression_retriever.get_relevant_documents("query")
```
### Pattern 4: Parent Document Retriever
```python
from langchain.retrievers import ParentDocumentRetriever
from langchain.storage import InMemoryStore
# Store for parent documents
store = InMemoryStore()
# Small chunks for retrieval, large chunks for context
child_splitter = RecursiveCharacterTextSplitter(chunk_size=400)
parent_splitter = RecursiveCharacterTextSplitter(chunk_size=2000)
retriever = ParentDocumentRetriever(
vectorstore=vectorstore,
docstore=store,
child_splitter=child_splitter,
parent_splitter=parent_splitter
)
```
## Document Chunking Strategies
### Recursive Character Text Splitter
```python
from langchain.text_splitters import RecursiveCharacterTextSplitter
splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=200,
length_function=len,
separators=["\n\n", "\n", " ", ""] # Try these in order
)
```
### Token-Based Splitting
```python
from langchain.text_splitters import TokenTextSplitter
splitter = TokenTextSplitter(
chunk_size=512,
chunk_overlap=50
)
```
### Semantic Chunking
```python
from langchain.text_splitters import SemanticChunker
splitter = SemanticChunker(
embeddings=OpenAIEmbeddings(),
breakpoint_threshold_type="percentile"
)
```
### Markdown Header Splitter
```python
from langchain.text_splitters import MarkdownHeaderTextSplitter
headers_to_split_on = [
("#", "Header 1"),
("##", "Header 2"),
("###", "Header 3"),
]
splitter = MarkdownHeaderTextSplitter(headers_to_split_on=headers_to_split_on)
```
## Vector Store Configurations
### Pinecone
```python
import pinecone
from langchain.vectorstores import Pinecone
pinecone.init(api_key="your-api-key", environment="us-west1-gcp")
index = pinecone.Index("your-index-name")
vectorstore = Pinecone(index, embeddings.embed_query, "text")
```
### Weaviate
```python
import weaviate
from langchain.vectorstores import Weaviate
client = weaviate.Client("http://localhost:8080")
vectorstore = Weaviate(client, "Document", "content", embeddings)
```
### Chroma (Local)
```python
from langchain.vectorstores import Chroma
vectorstore = Chroma(
collection_name="my_collection",
embedding_function=embeddings,
persist_directory="./chroma_db"
)
```
## Retrieval Optimization
### 1. Metadata Filtering
```python
# Add metadata during indexing
chunks_with_metadata = []
for i, chunk in enumerate(chunks):
chunk.metadata = {
"source": chunk.metadata.get("source"),
"page": i,
"category": determine_category(chunk.page_content)
}
chunks_with_metadata.append(chunk)
# Filter during retrieval
results = vectorstore.similarity_search(
"query",
filter={"category": "technical"},
k=5
)
```
### 2. Maximal Marginal Relevance
```python
# Balance relevance with diversity
results = vectorstore.max_marginal_relevance_search(
"query",
k=5,
fetch_k=20, # Fetch 20, return top 5 diverse
lambda_mult=0.5 # 0=max diversity, 1=max relevance
)
```
### 3. Reranking with Cross-Encoder
```python
from sentence_transformers import CrossEncoder
reranker = CrossEncoder('cross-encoder/ms-marco-MiniLM-L-6-v2')
# Get initial results
candidates = vectorstore.similarity_search("query", k=20)
# Rerank
pairs = [[query, doc.page_content] for doc in candidates]
scores = reranker.predict(pairs)
# Sort by score and take top k
reranked = sorted(zip(candidates, scores), key=lambda x: x[1], reverse=True)[:5]
```
## Prompt Engineering for RAG
### Contextual Prompt
```python
prompt_template = """Use the following context to answer the question. If you cannot answer based on the context, say "I don't have enough information."
Context:
{context}
Question: {question}
Answer:"""
```
### With Citations
```python
prompt_template = """Answer the question based on the context below. Include citations using [1], [2], etc.
Context:
{context}
Question: {question}
Answer (with citations):"""
```
### With Confidence
```python
prompt_template = """Answer the question using the context. Provide a confidence score (0-100%) for your answer.
Context:
{context}
Question: {question}
Answer:
Confidence:"""
```
## Evaluation Metrics
```python
def evaluate_rag_system(qa_chain, test_cases):
metrics = {
'accuracy': [],
'retrieval_quality': [],
'groundedness': []
}
for test in test_cases:
result = qa_chain({"query": test['question']})
# Check if answer matches expected
accuracy = calculate_accuracy(result['result'], test['expected'])
metrics['accuracy'].append(accuracy)
# Check if relevant docs were retrieved
retrieval_quality = evaluate_retrieved_docs(
result['source_documents'],
test['relevant_docs']
)
metrics['retrieval_quality'].append(retrieval_quality)
# Check if answer is grounded in context
groundedness = check_groundedness(
result['result'],
result['source_documents']
)
metrics['groundedness'].append(groundedness)
return {k: sum(v)/len(v) for k, v in metrics.items()}
```
## Resources
- **references/vector-databases.md**: Detailed comparison of vector DBs
- **references/embeddings.md**: Embedding model selection guide
- **references/retrieval-strategies.md**: Advanced retrieval techniques
- **references/reranking.md**: Reranking methods and when to use them
- **references/context-window.md**: Managing context limits
- **assets/vector-store-config.yaml**: Configuration templates
- **assets/retriever-pipeline.py**: Complete RAG pipeline
- **assets/embedding-models.md**: Model comparison and benchmarks
## Best Practices
1. **Chunk Size**: Balance between context and specificity (500-1000 tokens)
2. **Overlap**: Use 10-20% overlap to preserve context at boundaries
3. **Metadata**: Include source, page, timestamp for filtering and debugging
4. **Hybrid Search**: Combine semantic and keyword search for best results
5. **Reranking**: Improve top results with cross-encoder
6. **Citations**: Always return source documents for transparency
7. **Evaluation**: Continuously test retrieval quality and answer accuracy
8. **Monitoring**: Track retrieval metrics in production
## Common Issues
- **Poor Retrieval**: Check embedding quality, chunk size, query formulation
- **Irrelevant Results**: Add metadata filtering, use hybrid search, rerank
- **Missing Information**: Ensure documents are properly indexed
- **Slow Queries**: Optimize vector store, use caching, reduce k
- **Hallucinations**: Improve grounding prompt, add verification step