Files
gh-hermeticormus-hermetic-l…/skills/prompt-engineering-patterns/references/prompt-optimization.md
2025-11-29 18:44:49 +08:00

415 lines
12 KiB
Markdown

# Prompt Optimization Guide
## Systematic Refinement Process
### 1. Baseline Establishment
```python
def establish_baseline(prompt, test_cases):
results = {
'accuracy': 0,
'avg_tokens': 0,
'avg_latency': 0,
'success_rate': 0
}
for test_case in test_cases:
response = llm.complete(prompt.format(**test_case['input']))
results['accuracy'] += evaluate_accuracy(response, test_case['expected'])
results['avg_tokens'] += count_tokens(response)
results['avg_latency'] += measure_latency(response)
results['success_rate'] += is_valid_response(response)
# Average across test cases
n = len(test_cases)
return {k: v/n for k, v in results.items()}
```
### 2. Iterative Refinement Workflow
```
Initial Prompt → Test → Analyze Failures → Refine → Test → Repeat
```
```python
class PromptOptimizer:
def __init__(self, initial_prompt, test_suite):
self.prompt = initial_prompt
self.test_suite = test_suite
self.history = []
def optimize(self, max_iterations=10):
for i in range(max_iterations):
# Test current prompt
results = self.evaluate_prompt(self.prompt)
self.history.append({
'iteration': i,
'prompt': self.prompt,
'results': results
})
# Stop if good enough
if results['accuracy'] > 0.95:
break
# Analyze failures
failures = self.analyze_failures(results)
# Generate refinement suggestions
refinements = self.generate_refinements(failures)
# Apply best refinement
self.prompt = self.select_best_refinement(refinements)
return self.get_best_prompt()
```
### 3. A/B Testing Framework
```python
class PromptABTest:
def __init__(self, variant_a, variant_b):
self.variant_a = variant_a
self.variant_b = variant_b
def run_test(self, test_queries, metrics=['accuracy', 'latency']):
results = {
'A': {m: [] for m in metrics},
'B': {m: [] for m in metrics}
}
for query in test_queries:
# Randomly assign variant (50/50 split)
variant = 'A' if random.random() < 0.5 else 'B'
prompt = self.variant_a if variant == 'A' else self.variant_b
response, metrics_data = self.execute_with_metrics(
prompt.format(query=query['input'])
)
for metric in metrics:
results[variant][metric].append(metrics_data[metric])
return self.analyze_results(results)
def analyze_results(self, results):
from scipy import stats
analysis = {}
for metric in results['A'].keys():
a_values = results['A'][metric]
b_values = results['B'][metric]
# Statistical significance test
t_stat, p_value = stats.ttest_ind(a_values, b_values)
analysis[metric] = {
'A_mean': np.mean(a_values),
'B_mean': np.mean(b_values),
'improvement': (np.mean(b_values) - np.mean(a_values)) / np.mean(a_values),
'statistically_significant': p_value < 0.05,
'p_value': p_value,
'winner': 'B' if np.mean(b_values) > np.mean(a_values) else 'A'
}
return analysis
```
## Optimization Strategies
### Token Reduction
```python
def optimize_for_tokens(prompt):
optimizations = [
# Remove redundant phrases
('in order to', 'to'),
('due to the fact that', 'because'),
('at this point in time', 'now'),
# Consolidate instructions
('First, ...\\nThen, ...\\nFinally, ...', 'Steps: 1) ... 2) ... 3) ...'),
# Use abbreviations (after first definition)
('Natural Language Processing (NLP)', 'NLP'),
# Remove filler words
(' actually ', ' '),
(' basically ', ' '),
(' really ', ' ')
]
optimized = prompt
for old, new in optimizations:
optimized = optimized.replace(old, new)
return optimized
```
### Latency Reduction
```python
def optimize_for_latency(prompt):
strategies = {
'shorter_prompt': reduce_token_count(prompt),
'streaming': enable_streaming_response(prompt),
'caching': add_cacheable_prefix(prompt),
'early_stopping': add_stop_sequences(prompt)
}
# Test each strategy
best_strategy = None
best_latency = float('inf')
for name, modified_prompt in strategies.items():
latency = measure_average_latency(modified_prompt)
if latency < best_latency:
best_latency = latency
best_strategy = modified_prompt
return best_strategy
```
### Accuracy Improvement
```python
def improve_accuracy(prompt, failure_cases):
improvements = []
# Add constraints for common failures
if has_format_errors(failure_cases):
improvements.append("Output must be valid JSON with no additional text.")
# Add examples for edge cases
edge_cases = identify_edge_cases(failure_cases)
if edge_cases:
improvements.append(f"Examples of edge cases:\\n{format_examples(edge_cases)}")
# Add verification step
if has_logical_errors(failure_cases):
improvements.append("Before responding, verify your answer is logically consistent.")
# Strengthen instructions
if has_ambiguity_errors(failure_cases):
improvements.append(clarify_ambiguous_instructions(prompt))
return integrate_improvements(prompt, improvements)
```
## Performance Metrics
### Core Metrics
```python
class PromptMetrics:
@staticmethod
def accuracy(responses, ground_truth):
return sum(r == gt for r, gt in zip(responses, ground_truth)) / len(responses)
@staticmethod
def consistency(responses):
# Measure how often identical inputs produce identical outputs
from collections import defaultdict
input_responses = defaultdict(list)
for inp, resp in responses:
input_responses[inp].append(resp)
consistency_scores = []
for inp, resps in input_responses.items():
if len(resps) > 1:
# Percentage of responses that match the most common response
most_common_count = Counter(resps).most_common(1)[0][1]
consistency_scores.append(most_common_count / len(resps))
return np.mean(consistency_scores) if consistency_scores else 1.0
@staticmethod
def token_efficiency(prompt, responses):
avg_prompt_tokens = np.mean([count_tokens(prompt.format(**r['input'])) for r in responses])
avg_response_tokens = np.mean([count_tokens(r['output']) for r in responses])
return avg_prompt_tokens + avg_response_tokens
@staticmethod
def latency_p95(latencies):
return np.percentile(latencies, 95)
```
### Automated Evaluation
```python
def evaluate_prompt_comprehensively(prompt, test_suite):
results = {
'accuracy': [],
'consistency': [],
'latency': [],
'tokens': [],
'success_rate': []
}
# Run each test case multiple times for consistency measurement
for test_case in test_suite:
runs = []
for _ in range(3): # 3 runs per test case
start = time.time()
response = llm.complete(prompt.format(**test_case['input']))
latency = time.time() - start
runs.append(response)
results['latency'].append(latency)
results['tokens'].append(count_tokens(prompt) + count_tokens(response))
# Accuracy (best of 3 runs)
accuracies = [evaluate_accuracy(r, test_case['expected']) for r in runs]
results['accuracy'].append(max(accuracies))
# Consistency (how similar are the 3 runs?)
results['consistency'].append(calculate_similarity(runs))
# Success rate (all runs successful?)
results['success_rate'].append(all(is_valid(r) for r in runs))
return {
'avg_accuracy': np.mean(results['accuracy']),
'avg_consistency': np.mean(results['consistency']),
'p95_latency': np.percentile(results['latency'], 95),
'avg_tokens': np.mean(results['tokens']),
'success_rate': np.mean(results['success_rate'])
}
```
## Failure Analysis
### Categorizing Failures
```python
class FailureAnalyzer:
def categorize_failures(self, test_results):
categories = {
'format_errors': [],
'factual_errors': [],
'logic_errors': [],
'incomplete_responses': [],
'hallucinations': [],
'off_topic': []
}
for result in test_results:
if not result['success']:
category = self.determine_failure_type(
result['response'],
result['expected']
)
categories[category].append(result)
return categories
def generate_fixes(self, categorized_failures):
fixes = []
if categorized_failures['format_errors']:
fixes.append({
'issue': 'Format errors',
'fix': 'Add explicit format examples and constraints',
'priority': 'high'
})
if categorized_failures['hallucinations']:
fixes.append({
'issue': 'Hallucinations',
'fix': 'Add grounding instruction: "Base your answer only on provided context"',
'priority': 'critical'
})
if categorized_failures['incomplete_responses']:
fixes.append({
'issue': 'Incomplete responses',
'fix': 'Add: "Ensure your response fully addresses all parts of the question"',
'priority': 'medium'
})
return fixes
```
## Versioning and Rollback
### Prompt Version Control
```python
class PromptVersionControl:
def __init__(self, storage_path):
self.storage = storage_path
self.versions = []
def save_version(self, prompt, metadata):
version = {
'id': len(self.versions),
'prompt': prompt,
'timestamp': datetime.now(),
'metrics': metadata.get('metrics', {}),
'description': metadata.get('description', ''),
'parent_id': metadata.get('parent_id')
}
self.versions.append(version)
self.persist()
return version['id']
def rollback(self, version_id):
if version_id < len(self.versions):
return self.versions[version_id]['prompt']
raise ValueError(f"Version {version_id} not found")
def compare_versions(self, v1_id, v2_id):
v1 = self.versions[v1_id]
v2 = self.versions[v2_id]
return {
'diff': generate_diff(v1['prompt'], v2['prompt']),
'metrics_comparison': {
metric: {
'v1': v1['metrics'].get(metric),
'v2': v2['metrics'].get(metric'),
'change': v2['metrics'].get(metric, 0) - v1['metrics'].get(metric, 0)
}
for metric in set(v1['metrics'].keys()) | set(v2['metrics'].keys())
}
}
```
## Best Practices
1. **Establish Baseline**: Always measure initial performance
2. **Change One Thing**: Isolate variables for clear attribution
3. **Test Thoroughly**: Use diverse, representative test cases
4. **Track Metrics**: Log all experiments and results
5. **Validate Significance**: Use statistical tests for A/B comparisons
6. **Document Changes**: Keep detailed notes on what and why
7. **Version Everything**: Enable rollback to previous versions
8. **Monitor Production**: Continuously evaluate deployed prompts
## Common Optimization Patterns
### Pattern 1: Add Structure
```
Before: "Analyze this text"
After: "Analyze this text for:\n1. Main topic\n2. Key arguments\n3. Conclusion"
```
### Pattern 2: Add Examples
```
Before: "Extract entities"
After: "Extract entities\\n\\nExample:\\nText: Apple released iPhone\\nEntities: {company: Apple, product: iPhone}"
```
### Pattern 3: Add Constraints
```
Before: "Summarize this"
After: "Summarize in exactly 3 bullet points, 15 words each"
```
### Pattern 4: Add Verification
```
Before: "Calculate..."
After: "Calculate... Then verify your calculation is correct before responding."
```
## Tools and Utilities
- Prompt diff tools for version comparison
- Automated test runners
- Metric dashboards
- A/B testing frameworks
- Token counting utilities
- Latency profilers