Initial commit

This commit is contained in:
Zhongwei Li
2025-11-29 18:34:37 +08:00
commit 940ea9fa9e
10 changed files with 4181 additions and 0 deletions

View File

@@ -0,0 +1,22 @@
{
"name": "javascript-typescript",
"description": "JavaScript and TypeScript development with ES6+, Node.js, React, and modern web frameworks",
"version": "1.2.1",
"author": {
"name": "Seth Hobson",
"url": "https://github.com/wshobson"
},
"skills": [
"./skills/typescript-advanced-types",
"./skills/nodejs-backend-patterns",
"./skills/javascript-testing-patterns",
"./skills/modern-javascript-patterns"
],
"agents": [
"./agents/javascript-pro.md",
"./agents/typescript-pro.md"
],
"commands": [
"./commands/typescript-scaffold.md"
]
}

3
README.md Normal file
View File

@@ -0,0 +1,3 @@
# javascript-typescript
JavaScript and TypeScript development with ES6+, Node.js, React, and modern web frameworks

35
agents/javascript-pro.md Normal file
View File

@@ -0,0 +1,35 @@
---
name: javascript-pro
description: Master modern JavaScript with ES6+, async patterns, and Node.js APIs. Handles promises, event loops, and browser/Node compatibility. Use PROACTIVELY for JavaScript optimization, async debugging, or complex JS patterns.
model: sonnet
---
You are a JavaScript expert specializing in modern JS and async programming.
## Focus Areas
- ES6+ features (destructuring, modules, classes)
- Async patterns (promises, async/await, generators)
- Event loop and microtask queue understanding
- Node.js APIs and performance optimization
- Browser APIs and cross-browser compatibility
- TypeScript migration and type safety
## Approach
1. Prefer async/await over promise chains
2. Use functional patterns where appropriate
3. Handle errors at appropriate boundaries
4. Avoid callback hell with modern patterns
5. Consider bundle size for browser code
## Output
- Modern JavaScript with proper error handling
- Async code with race condition prevention
- Module structure with clean exports
- Jest tests with async test patterns
- Performance profiling results
- Polyfill strategy for browser compatibility
Support both Node.js and browser environments. Include JSDoc comments.

33
agents/typescript-pro.md Normal file
View File

@@ -0,0 +1,33 @@
---
name: typescript-pro
description: Master TypeScript with advanced types, generics, and strict type safety. Handles complex type systems, decorators, and enterprise-grade patterns. Use PROACTIVELY for TypeScript architecture, type inference optimization, or advanced typing patterns.
model: sonnet
---
You are a TypeScript expert specializing in advanced typing and enterprise-grade development.
## Focus Areas
- Advanced type systems (generics, conditional types, mapped types)
- Strict TypeScript configuration and compiler options
- Type inference optimization and utility types
- Decorators and metadata programming
- Module systems and namespace organization
- Integration with modern frameworks (React, Node.js, Express)
## Approach
1. Leverage strict type checking with appropriate compiler flags
2. Use generics and utility types for maximum type safety
3. Prefer type inference over explicit annotations when clear
4. Design robust interfaces and abstract classes
5. Implement proper error boundaries with typed exceptions
6. Optimize build times with incremental compilation
## Output
- Strongly-typed TypeScript with comprehensive interfaces
- Generic functions and classes with proper constraints
- Custom utility types and advanced type manipulations
- Jest/Vitest tests with proper type assertions
- TSConfig optimization for project requirements
- Type declaration files (.d.ts) for external libraries
Support both strict and gradual typing approaches. Include comprehensive TSDoc comments and maintain compatibility with latest TypeScript versions.

View File

@@ -0,0 +1,346 @@
# TypeScript Project Scaffolding
You are a TypeScript project architecture expert specializing in scaffolding production-ready Node.js and frontend applications. Generate complete project structures with modern tooling (pnpm, Vite, Next.js), type safety, testing setup, and configuration following current best practices.
## Context
The user needs automated TypeScript project scaffolding that creates consistent, type-safe applications with proper structure, dependency management, testing, and build tooling. Focus on modern TypeScript patterns and scalable architecture.
## Requirements
$ARGUMENTS
## Instructions
### 1. Analyze Project Type
Determine the project type from user requirements:
- **Next.js**: Full-stack React applications, SSR/SSG, API routes
- **React + Vite**: SPA applications, component libraries
- **Node.js API**: Express/Fastify backends, microservices
- **Library**: Reusable packages, utilities, tools
- **CLI**: Command-line tools, automation scripts
### 2. Initialize Project with pnpm
```bash
# Install pnpm if needed
npm install -g pnpm
# Initialize project
mkdir project-name && cd project-name
pnpm init
# Initialize git
git init
echo "node_modules/" >> .gitignore
echo "dist/" >> .gitignore
echo ".env" >> .gitignore
```
### 3. Generate Next.js Project Structure
```bash
# Create Next.js project with TypeScript
pnpm create next-app@latest . --typescript --tailwind --app --src-dir --import-alias "@/*"
```
```
nextjs-project/
├── package.json
├── tsconfig.json
├── next.config.js
├── .env.example
├── src/
│ ├── app/
│ │ ├── layout.tsx
│ │ ├── page.tsx
│ │ ├── api/
│ │ │ └── health/
│ │ │ └── route.ts
│ │ └── (routes)/
│ │ └── dashboard/
│ │ └── page.tsx
│ ├── components/
│ │ ├── ui/
│ │ │ ├── Button.tsx
│ │ │ └── Card.tsx
│ │ └── layout/
│ │ ├── Header.tsx
│ │ └── Footer.tsx
│ ├── lib/
│ │ ├── api.ts
│ │ ├── utils.ts
│ │ └── types.ts
│ └── hooks/
│ ├── useAuth.ts
│ └── useFetch.ts
└── tests/
├── setup.ts
└── components/
└── Button.test.tsx
```
**package.json**:
```json
{
"name": "nextjs-project",
"version": "0.1.0",
"scripts": {
"dev": "next dev",
"build": "next build",
"start": "next start",
"lint": "next lint",
"test": "vitest",
"type-check": "tsc --noEmit"
},
"dependencies": {
"next": "^14.1.0",
"react": "^18.2.0",
"react-dom": "^18.2.0"
},
"devDependencies": {
"@types/node": "^20.11.0",
"@types/react": "^18.2.0",
"typescript": "^5.3.0",
"vitest": "^1.2.0",
"@vitejs/plugin-react": "^4.2.0",
"eslint": "^8.56.0",
"eslint-config-next": "^14.1.0"
}
}
```
**tsconfig.json**:
```json
{
"compilerOptions": {
"target": "ES2022",
"lib": ["ES2022", "DOM", "DOM.Iterable"],
"jsx": "preserve",
"module": "ESNext",
"moduleResolution": "bundler",
"resolveJsonModule": true,
"allowJs": true,
"strict": true,
"noEmit": true,
"esModuleInterop": true,
"skipLibCheck": true,
"forceConsistentCasingInFileNames": true,
"incremental": true,
"paths": {
"@/*": ["./src/*"]
},
"plugins": [{"name": "next"}]
},
"include": ["next-env.d.ts", "**/*.ts", "**/*.tsx"],
"exclude": ["node_modules"]
}
```
### 4. Generate React + Vite Project Structure
```bash
# Create Vite project
pnpm create vite . --template react-ts
```
**vite.config.ts**:
```typescript
import { defineConfig } from 'vite'
import react from '@vitejs/plugin-react'
import path from 'path'
export default defineConfig({
plugins: [react()],
resolve: {
alias: {
'@': path.resolve(__dirname, './src'),
},
},
server: {
port: 3000,
},
test: {
globals: true,
environment: 'jsdom',
setupFiles: './tests/setup.ts',
},
})
```
### 5. Generate Node.js API Project Structure
```
nodejs-api/
├── package.json
├── tsconfig.json
├── src/
│ ├── index.ts
│ ├── app.ts
│ ├── config/
│ │ ├── database.ts
│ │ └── env.ts
│ ├── routes/
│ │ ├── index.ts
│ │ ├── users.ts
│ │ └── health.ts
│ ├── controllers/
│ │ └── userController.ts
│ ├── services/
│ │ └── userService.ts
│ ├── models/
│ │ └── User.ts
│ ├── middleware/
│ │ ├── auth.ts
│ │ └── errorHandler.ts
│ └── types/
│ └── express.d.ts
└── tests/
└── routes/
└── users.test.ts
```
**package.json for Node.js API**:
```json
{
"name": "nodejs-api",
"version": "0.1.0",
"type": "module",
"scripts": {
"dev": "tsx watch src/index.ts",
"build": "tsc",
"start": "node dist/index.js",
"test": "vitest",
"lint": "eslint src --ext .ts"
},
"dependencies": {
"express": "^4.18.2",
"dotenv": "^16.4.0",
"zod": "^3.22.0"
},
"devDependencies": {
"@types/express": "^4.17.21",
"@types/node": "^20.11.0",
"typescript": "^5.3.0",
"tsx": "^4.7.0",
"vitest": "^1.2.0",
"eslint": "^8.56.0",
"@typescript-eslint/parser": "^6.19.0",
"@typescript-eslint/eslint-plugin": "^6.19.0"
}
}
```
**src/app.ts**:
```typescript
import express, { Express } from 'express'
import { healthRouter } from './routes/health.js'
import { userRouter } from './routes/users.js'
import { errorHandler } from './middleware/errorHandler.js'
export function createApp(): Express {
const app = express()
app.use(express.json())
app.use('/health', healthRouter)
app.use('/api/users', userRouter)
app.use(errorHandler)
return app
}
```
### 6. Generate TypeScript Library Structure
```
library-name/
├── package.json
├── tsconfig.json
├── tsconfig.build.json
├── src/
│ ├── index.ts
│ └── core.ts
├── tests/
│ └── core.test.ts
└── dist/
```
**package.json for Library**:
```json
{
"name": "@scope/library-name",
"version": "0.1.0",
"type": "module",
"main": "./dist/index.js",
"types": "./dist/index.d.ts",
"exports": {
".": {
"import": "./dist/index.js",
"types": "./dist/index.d.ts"
}
},
"files": ["dist"],
"scripts": {
"build": "tsc -p tsconfig.build.json",
"test": "vitest",
"prepublishOnly": "pnpm build"
},
"devDependencies": {
"typescript": "^5.3.0",
"vitest": "^1.2.0"
}
}
```
### 7. Configure Development Tools
**.env.example**:
```env
NODE_ENV=development
PORT=3000
DATABASE_URL=postgresql://user:pass@localhost:5432/db
JWT_SECRET=your-secret-key
```
**vitest.config.ts**:
```typescript
import { defineConfig } from 'vitest/config'
export default defineConfig({
test: {
globals: true,
environment: 'node',
coverage: {
provider: 'v8',
reporter: ['text', 'json', 'html'],
},
},
})
```
**.eslintrc.json**:
```json
{
"parser": "@typescript-eslint/parser",
"extends": [
"eslint:recommended",
"plugin:@typescript-eslint/recommended"
],
"rules": {
"@typescript-eslint/no-explicit-any": "warn",
"@typescript-eslint/no-unused-vars": "error"
}
}
```
## Output Format
1. **Project Structure**: Complete directory tree with all necessary files
2. **Configuration**: package.json, tsconfig.json, build tooling
3. **Entry Point**: Main application file with type-safe setup
4. **Tests**: Test structure with Vitest configuration
5. **Documentation**: README with setup and usage instructions
6. **Development Tools**: .env.example, .gitignore, linting config
Focus on creating production-ready TypeScript projects with modern tooling, strict type safety, and comprehensive testing setup.

69
plugin.lock.json Normal file
View File

@@ -0,0 +1,69 @@
{
"$schema": "internal://schemas/plugin.lock.v1.json",
"pluginId": "gh:HermeticOrmus/Alqvimia-Contador:plugins/javascript-typescript",
"normalized": {
"repo": null,
"ref": "refs/tags/v20251128.0",
"commit": "52a0bd49608ce6390f563b3faa26ade6bdff14ea",
"treeHash": "289e93e00b74761c3f14be346f07d0500cf0ff26959c5670036a790700303e36",
"generatedAt": "2025-11-28T10:10:44.230711Z",
"toolVersion": "publish_plugins.py@0.2.0"
},
"origin": {
"remote": "git@github.com:zhongweili/42plugin-data.git",
"branch": "master",
"commit": "aa1497ed0949fd50e99e70d6324a29c5b34f9390",
"repoRoot": "/Users/zhongweili/projects/openmind/42plugin-data"
},
"manifest": {
"name": "javascript-typescript",
"description": "JavaScript and TypeScript development with ES6+, Node.js, React, and modern web frameworks",
"version": "1.2.1"
},
"content": {
"files": [
{
"path": "README.md",
"sha256": "4bf011b5d64574c09cfd6c33eeffa76c82617d74d942216ee6035c76d8b3aadd"
},
{
"path": "agents/javascript-pro.md",
"sha256": "c8b65214462d98fa1f62a7ce26ea30341ca35f2c77313a18daa9553b0e4d5bed"
},
{
"path": "agents/typescript-pro.md",
"sha256": "8eb037a2a80b332807511960e87e3b50b57f76334b741674a7c71b4ea4840bb5"
},
{
"path": ".claude-plugin/plugin.json",
"sha256": "f23466cea34c79e8e79dbd7d6ededecf8cbc205c94f0fdeb1486e50a6419c3f8"
},
{
"path": "commands/typescript-scaffold.md",
"sha256": "b6fe21500713f7c049fc0a42e9c19cd522c1e4963dff1fc62952e90837e0be30"
},
{
"path": "skills/javascript-testing-patterns/SKILL.md",
"sha256": "91bd0860da653c2fc796b47be1e1f55c61d4e72ab0aaaf18509cfd2ca3805352"
},
{
"path": "skills/typescript-advanced-types/SKILL.md",
"sha256": "2c2dea20ce6d164b63aa85cc3010b20fc0beb3d34f52826aaec1c9c41ab27587"
},
{
"path": "skills/modern-javascript-patterns/SKILL.md",
"sha256": "98c861b36cc37530499bf48ace5d3f5ca5c0f29fa873b5d24a2d1f40f89af1cd"
},
{
"path": "skills/nodejs-backend-patterns/SKILL.md",
"sha256": "ca74d6ff3d515709c471af789ac94a93c0b5c020a52939722f651d40b618c657"
}
],
"dirSha256": "289e93e00b74761c3f14be346f07d0500cf0ff26959c5670036a790700303e36"
},
"security": {
"scannedAt": null,
"scannerVersion": null,
"flags": []
}
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,911 @@
---
name: modern-javascript-patterns
description: Master ES6+ features including async/await, destructuring, spread operators, arrow functions, promises, modules, iterators, generators, and functional programming patterns for writing clean, efficient JavaScript code. Use when refactoring legacy code, implementing modern patterns, or optimizing JavaScript applications.
---
# Modern JavaScript Patterns
Comprehensive guide for mastering modern JavaScript (ES6+) features, functional programming patterns, and best practices for writing clean, maintainable, and performant code.
## When to Use This Skill
- Refactoring legacy JavaScript to modern syntax
- Implementing functional programming patterns
- Optimizing JavaScript performance
- Writing maintainable and readable code
- Working with asynchronous operations
- Building modern web applications
- Migrating from callbacks to Promises/async-await
- Implementing data transformation pipelines
## ES6+ Core Features
### 1. Arrow Functions
**Syntax and Use Cases:**
```javascript
// Traditional function
function add(a, b) {
return a + b;
}
// Arrow function
const add = (a, b) => a + b;
// Single parameter (parentheses optional)
const double = x => x * 2;
// No parameters
const getRandom = () => Math.random();
// Multiple statements (need curly braces)
const processUser = user => {
const normalized = user.name.toLowerCase();
return { ...user, name: normalized };
};
// Returning objects (wrap in parentheses)
const createUser = (name, age) => ({ name, age });
```
**Lexical 'this' Binding:**
```javascript
class Counter {
constructor() {
this.count = 0;
}
// Arrow function preserves 'this' context
increment = () => {
this.count++;
};
// Traditional function loses 'this' in callbacks
incrementTraditional() {
setTimeout(function() {
this.count++; // 'this' is undefined
}, 1000);
}
// Arrow function maintains 'this'
incrementArrow() {
setTimeout(() => {
this.count++; // 'this' refers to Counter instance
}, 1000);
}
}
```
### 2. Destructuring
**Object Destructuring:**
```javascript
const user = {
id: 1,
name: 'John Doe',
email: 'john@example.com',
address: {
city: 'New York',
country: 'USA'
}
};
// Basic destructuring
const { name, email } = user;
// Rename variables
const { name: userName, email: userEmail } = user;
// Default values
const { age = 25 } = user;
// Nested destructuring
const { address: { city, country } } = user;
// Rest operator
const { id, ...userWithoutId } = user;
// Function parameters
function greet({ name, age = 18 }) {
console.log(`Hello ${name}, you are ${age}`);
}
greet(user);
```
**Array Destructuring:**
```javascript
const numbers = [1, 2, 3, 4, 5];
// Basic destructuring
const [first, second] = numbers;
// Skip elements
const [, , third] = numbers;
// Rest operator
const [head, ...tail] = numbers;
// Swapping variables
let a = 1, b = 2;
[a, b] = [b, a];
// Function return values
function getCoordinates() {
return [10, 20];
}
const [x, y] = getCoordinates();
// Default values
const [one, two, three = 0] = [1, 2];
```
### 3. Spread and Rest Operators
**Spread Operator:**
```javascript
// Array spreading
const arr1 = [1, 2, 3];
const arr2 = [4, 5, 6];
const combined = [...arr1, ...arr2];
// Object spreading
const defaults = { theme: 'dark', lang: 'en' };
const userPrefs = { theme: 'light' };
const settings = { ...defaults, ...userPrefs };
// Function arguments
const numbers = [1, 2, 3];
Math.max(...numbers);
// Copying arrays/objects (shallow copy)
const copy = [...arr1];
const objCopy = { ...user };
// Adding items immutably
const newArr = [...arr1, 4, 5];
const newObj = { ...user, age: 30 };
```
**Rest Parameters:**
```javascript
// Collect function arguments
function sum(...numbers) {
return numbers.reduce((total, num) => total + num, 0);
}
sum(1, 2, 3, 4, 5);
// With regular parameters
function greet(greeting, ...names) {
return `${greeting} ${names.join(', ')}`;
}
greet('Hello', 'John', 'Jane', 'Bob');
// Object rest
const { id, ...userData } = user;
// Array rest
const [first, ...rest] = [1, 2, 3, 4, 5];
```
### 4. Template Literals
```javascript
// Basic usage
const name = 'John';
const greeting = `Hello, ${name}!`;
// Multi-line strings
const html = `
<div>
<h1>${title}</h1>
<p>${content}</p>
</div>
`;
// Expression evaluation
const price = 19.99;
const total = `Total: $${(price * 1.2).toFixed(2)}`;
// Tagged template literals
function highlight(strings, ...values) {
return strings.reduce((result, str, i) => {
const value = values[i] || '';
return result + str + `<mark>${value}</mark>`;
}, '');
}
const name = 'John';
const age = 30;
const html = highlight`Name: ${name}, Age: ${age}`;
// Output: "Name: <mark>John</mark>, Age: <mark>30</mark>"
```
### 5. Enhanced Object Literals
```javascript
const name = 'John';
const age = 30;
// Shorthand property names
const user = { name, age };
// Shorthand method names
const calculator = {
add(a, b) {
return a + b;
},
subtract(a, b) {
return a - b;
}
};
// Computed property names
const field = 'email';
const user = {
name: 'John',
[field]: 'john@example.com',
[`get${field.charAt(0).toUpperCase()}${field.slice(1)}`]() {
return this[field];
}
};
// Dynamic property creation
const createUser = (name, ...props) => {
return props.reduce((user, [key, value]) => ({
...user,
[key]: value
}), { name });
};
const user = createUser('John', ['age', 30], ['email', 'john@example.com']);
```
## Asynchronous Patterns
### 1. Promises
**Creating and Using Promises:**
```javascript
// Creating a promise
const fetchUser = (id) => {
return new Promise((resolve, reject) => {
setTimeout(() => {
if (id > 0) {
resolve({ id, name: 'John' });
} else {
reject(new Error('Invalid ID'));
}
}, 1000);
});
};
// Using promises
fetchUser(1)
.then(user => console.log(user))
.catch(error => console.error(error))
.finally(() => console.log('Done'));
// Chaining promises
fetchUser(1)
.then(user => fetchUserPosts(user.id))
.then(posts => processPosts(posts))
.then(result => console.log(result))
.catch(error => console.error(error));
```
**Promise Combinators:**
```javascript
// Promise.all - Wait for all promises
const promises = [
fetchUser(1),
fetchUser(2),
fetchUser(3)
];
Promise.all(promises)
.then(users => console.log(users))
.catch(error => console.error('At least one failed:', error));
// Promise.allSettled - Wait for all, regardless of outcome
Promise.allSettled(promises)
.then(results => {
results.forEach(result => {
if (result.status === 'fulfilled') {
console.log('Success:', result.value);
} else {
console.log('Error:', result.reason);
}
});
});
// Promise.race - First to complete
Promise.race(promises)
.then(winner => console.log('First:', winner))
.catch(error => console.error(error));
// Promise.any - First to succeed
Promise.any(promises)
.then(first => console.log('First success:', first))
.catch(error => console.error('All failed:', error));
```
### 2. Async/Await
**Basic Usage:**
```javascript
// Async function always returns a Promise
async function fetchUser(id) {
const response = await fetch(`/api/users/${id}`);
const user = await response.json();
return user;
}
// Error handling with try/catch
async function getUserData(id) {
try {
const user = await fetchUser(id);
const posts = await fetchUserPosts(user.id);
return { user, posts };
} catch (error) {
console.error('Error fetching data:', error);
throw error;
}
}
// Sequential vs Parallel execution
async function sequential() {
const user1 = await fetchUser(1); // Wait
const user2 = await fetchUser(2); // Then wait
return [user1, user2];
}
async function parallel() {
const [user1, user2] = await Promise.all([
fetchUser(1),
fetchUser(2)
]);
return [user1, user2];
}
```
**Advanced Patterns:**
```javascript
// Async IIFE
(async () => {
const result = await someAsyncOperation();
console.log(result);
})();
// Async iteration
async function processUsers(userIds) {
for (const id of userIds) {
const user = await fetchUser(id);
await processUser(user);
}
}
// Top-level await (ES2022)
const config = await fetch('/config.json').then(r => r.json());
// Retry logic
async function fetchWithRetry(url, retries = 3) {
for (let i = 0; i < retries; i++) {
try {
return await fetch(url);
} catch (error) {
if (i === retries - 1) throw error;
await new Promise(resolve => setTimeout(resolve, 1000 * (i + 1)));
}
}
}
// Timeout wrapper
async function withTimeout(promise, ms) {
const timeout = new Promise((_, reject) =>
setTimeout(() => reject(new Error('Timeout')), ms)
);
return Promise.race([promise, timeout]);
}
```
## Functional Programming Patterns
### 1. Array Methods
**Map, Filter, Reduce:**
```javascript
const users = [
{ id: 1, name: 'John', age: 30, active: true },
{ id: 2, name: 'Jane', age: 25, active: false },
{ id: 3, name: 'Bob', age: 35, active: true }
];
// Map - Transform array
const names = users.map(user => user.name);
const upperNames = users.map(user => user.name.toUpperCase());
// Filter - Select elements
const activeUsers = users.filter(user => user.active);
const adults = users.filter(user => user.age >= 18);
// Reduce - Aggregate data
const totalAge = users.reduce((sum, user) => sum + user.age, 0);
const avgAge = totalAge / users.length;
// Group by property
const byActive = users.reduce((groups, user) => {
const key = user.active ? 'active' : 'inactive';
return {
...groups,
[key]: [...(groups[key] || []), user]
};
}, {});
// Chaining methods
const result = users
.filter(user => user.active)
.map(user => user.name)
.sort()
.join(', ');
```
**Advanced Array Methods:**
```javascript
// Find - First matching element
const user = users.find(u => u.id === 2);
// FindIndex - Index of first match
const index = users.findIndex(u => u.name === 'Jane');
// Some - At least one matches
const hasActive = users.some(u => u.active);
// Every - All match
const allAdults = users.every(u => u.age >= 18);
// FlatMap - Map and flatten
const userTags = [
{ name: 'John', tags: ['admin', 'user'] },
{ name: 'Jane', tags: ['user'] }
];
const allTags = userTags.flatMap(u => u.tags);
// From - Create array from iterable
const str = 'hello';
const chars = Array.from(str);
const numbers = Array.from({ length: 5 }, (_, i) => i + 1);
// Of - Create array from arguments
const arr = Array.of(1, 2, 3);
```
### 2. Higher-Order Functions
**Functions as Arguments:**
```javascript
// Custom forEach
function forEach(array, callback) {
for (let i = 0; i < array.length; i++) {
callback(array[i], i, array);
}
}
// Custom map
function map(array, transform) {
const result = [];
for (const item of array) {
result.push(transform(item));
}
return result;
}
// Custom filter
function filter(array, predicate) {
const result = [];
for (const item of array) {
if (predicate(item)) {
result.push(item);
}
}
return result;
}
```
**Functions Returning Functions:**
```javascript
// Currying
const multiply = a => b => a * b;
const double = multiply(2);
const triple = multiply(3);
console.log(double(5)); // 10
console.log(triple(5)); // 15
// Partial application
function partial(fn, ...args) {
return (...moreArgs) => fn(...args, ...moreArgs);
}
const add = (a, b, c) => a + b + c;
const add5 = partial(add, 5);
console.log(add5(3, 2)); // 10
// Memoization
function memoize(fn) {
const cache = new Map();
return (...args) => {
const key = JSON.stringify(args);
if (cache.has(key)) {
return cache.get(key);
}
const result = fn(...args);
cache.set(key, result);
return result;
};
}
const fibonacci = memoize((n) => {
if (n <= 1) return n;
return fibonacci(n - 1) + fibonacci(n - 2);
});
```
### 3. Composition and Piping
```javascript
// Function composition
const compose = (...fns) => x =>
fns.reduceRight((acc, fn) => fn(acc), x);
const pipe = (...fns) => x =>
fns.reduce((acc, fn) => fn(acc), x);
// Example usage
const addOne = x => x + 1;
const double = x => x * 2;
const square = x => x * x;
const composed = compose(square, double, addOne);
console.log(composed(3)); // ((3 + 1) * 2)^2 = 64
const piped = pipe(addOne, double, square);
console.log(piped(3)); // ((3 + 1) * 2)^2 = 64
// Practical example
const processUser = pipe(
user => ({ ...user, name: user.name.trim() }),
user => ({ ...user, email: user.email.toLowerCase() }),
user => ({ ...user, age: parseInt(user.age) })
);
const user = processUser({
name: ' John ',
email: 'JOHN@EXAMPLE.COM',
age: '30'
});
```
### 4. Pure Functions and Immutability
```javascript
// Impure function (modifies input)
function addItemImpure(cart, item) {
cart.items.push(item);
cart.total += item.price;
return cart;
}
// Pure function (no side effects)
function addItemPure(cart, item) {
return {
...cart,
items: [...cart.items, item],
total: cart.total + item.price
};
}
// Immutable array operations
const numbers = [1, 2, 3, 4, 5];
// Add to array
const withSix = [...numbers, 6];
// Remove from array
const withoutThree = numbers.filter(n => n !== 3);
// Update array element
const doubled = numbers.map(n => n === 3 ? n * 2 : n);
// Immutable object operations
const user = { name: 'John', age: 30 };
// Update property
const olderUser = { ...user, age: 31 };
// Add property
const withEmail = { ...user, email: 'john@example.com' };
// Remove property
const { age, ...withoutAge } = user;
// Deep cloning (simple approach)
const deepClone = obj => JSON.parse(JSON.stringify(obj));
// Better deep cloning
const structuredClone = obj => globalThis.structuredClone(obj);
```
## Modern Class Features
```javascript
// Class syntax
class User {
// Private fields
#password;
// Public fields
id;
name;
// Static field
static count = 0;
constructor(id, name, password) {
this.id = id;
this.name = name;
this.#password = password;
User.count++;
}
// Public method
greet() {
return `Hello, ${this.name}`;
}
// Private method
#hashPassword(password) {
return `hashed_${password}`;
}
// Getter
get displayName() {
return this.name.toUpperCase();
}
// Setter
set password(newPassword) {
this.#password = this.#hashPassword(newPassword);
}
// Static method
static create(id, name, password) {
return new User(id, name, password);
}
}
// Inheritance
class Admin extends User {
constructor(id, name, password, role) {
super(id, name, password);
this.role = role;
}
greet() {
return `${super.greet()}, I'm an admin`;
}
}
```
## Modules (ES6)
```javascript
// Exporting
// math.js
export const PI = 3.14159;
export function add(a, b) {
return a + b;
}
export class Calculator {
// ...
}
// Default export
export default function multiply(a, b) {
return a * b;
}
// Importing
// app.js
import multiply, { PI, add, Calculator } from './math.js';
// Rename imports
import { add as sum } from './math.js';
// Import all
import * as Math from './math.js';
// Dynamic imports
const module = await import('./math.js');
const { add } = await import('./math.js');
// Conditional loading
if (condition) {
const module = await import('./feature.js');
module.init();
}
```
## Iterators and Generators
```javascript
// Custom iterator
const range = {
from: 1,
to: 5,
[Symbol.iterator]() {
return {
current: this.from,
last: this.to,
next() {
if (this.current <= this.last) {
return { done: false, value: this.current++ };
} else {
return { done: true };
}
}
};
}
};
for (const num of range) {
console.log(num); // 1, 2, 3, 4, 5
}
// Generator function
function* rangeGenerator(from, to) {
for (let i = from; i <= to; i++) {
yield i;
}
}
for (const num of rangeGenerator(1, 5)) {
console.log(num);
}
// Infinite generator
function* fibonacci() {
let [prev, curr] = [0, 1];
while (true) {
yield curr;
[prev, curr] = [curr, prev + curr];
}
}
// Async generator
async function* fetchPages(url) {
let page = 1;
while (true) {
const response = await fetch(`${url}?page=${page}`);
const data = await response.json();
if (data.length === 0) break;
yield data;
page++;
}
}
for await (const page of fetchPages('/api/users')) {
console.log(page);
}
```
## Modern Operators
```javascript
// Optional chaining
const user = { name: 'John', address: { city: 'NYC' } };
const city = user?.address?.city;
const zipCode = user?.address?.zipCode; // undefined
// Function call
const result = obj.method?.();
// Array access
const first = arr?.[0];
// Nullish coalescing
const value = null ?? 'default'; // 'default'
const value = undefined ?? 'default'; // 'default'
const value = 0 ?? 'default'; // 0 (not 'default')
const value = '' ?? 'default'; // '' (not 'default')
// Logical assignment
let a = null;
a ??= 'default'; // a = 'default'
let b = 5;
b ??= 10; // b = 5 (unchanged)
let obj = { count: 0 };
obj.count ||= 1; // obj.count = 1
obj.count &&= 2; // obj.count = 2
```
## Performance Optimization
```javascript
// Debounce
function debounce(fn, delay) {
let timeoutId;
return (...args) => {
clearTimeout(timeoutId);
timeoutId = setTimeout(() => fn(...args), delay);
};
}
const searchDebounced = debounce(search, 300);
// Throttle
function throttle(fn, limit) {
let inThrottle;
return (...args) => {
if (!inThrottle) {
fn(...args);
inThrottle = true;
setTimeout(() => inThrottle = false, limit);
}
};
}
const scrollThrottled = throttle(handleScroll, 100);
// Lazy evaluation
function* lazyMap(iterable, transform) {
for (const item of iterable) {
yield transform(item);
}
}
// Use only what you need
const numbers = [1, 2, 3, 4, 5];
const doubled = lazyMap(numbers, x => x * 2);
const first = doubled.next().value; // Only computes first value
```
## Best Practices
1. **Use const by default**: Only use let when reassignment is needed
2. **Prefer arrow functions**: Especially for callbacks
3. **Use template literals**: Instead of string concatenation
4. **Destructure objects and arrays**: For cleaner code
5. **Use async/await**: Instead of Promise chains
6. **Avoid mutating data**: Use spread operator and array methods
7. **Use optional chaining**: Prevent "Cannot read property of undefined"
8. **Use nullish coalescing**: For default values
9. **Prefer array methods**: Over traditional loops
10. **Use modules**: For better code organization
11. **Write pure functions**: Easier to test and reason about
12. **Use meaningful variable names**: Self-documenting code
13. **Keep functions small**: Single responsibility principle
14. **Handle errors properly**: Use try/catch with async/await
15. **Use strict mode**: `'use strict'` for better error catching
## Common Pitfalls
1. **this binding confusion**: Use arrow functions or bind()
2. **Async/await without error handling**: Always use try/catch
3. **Promise creation unnecessary**: Don't wrap already async functions
4. **Mutation of objects**: Use spread operator or Object.assign()
5. **Forgetting await**: Async functions return promises
6. **Blocking event loop**: Avoid synchronous operations
7. **Memory leaks**: Clean up event listeners and timers
8. **Not handling promise rejections**: Use catch() or try/catch
## Resources
- **MDN Web Docs**: https://developer.mozilla.org/en-US/docs/Web/JavaScript
- **JavaScript.info**: https://javascript.info/
- **You Don't Know JS**: https://github.com/getify/You-Dont-Know-JS
- **Eloquent JavaScript**: https://eloquentjavascript.net/
- **ES6 Features**: http://es6-features.org/

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,717 @@
---
name: typescript-advanced-types
description: Master TypeScript's advanced type system including generics, conditional types, mapped types, template literals, and utility types for building type-safe applications. Use when implementing complex type logic, creating reusable type utilities, or ensuring compile-time type safety in TypeScript projects.
---
# TypeScript Advanced Types
Comprehensive guidance for mastering TypeScript's advanced type system including generics, conditional types, mapped types, template literal types, and utility types for building robust, type-safe applications.
## When to Use This Skill
- Building type-safe libraries or frameworks
- Creating reusable generic components
- Implementing complex type inference logic
- Designing type-safe API clients
- Building form validation systems
- Creating strongly-typed configuration objects
- Implementing type-safe state management
- Migrating JavaScript codebases to TypeScript
## Core Concepts
### 1. Generics
**Purpose:** Create reusable, type-flexible components while maintaining type safety.
**Basic Generic Function:**
```typescript
function identity<T>(value: T): T {
return value;
}
const num = identity<number>(42); // Type: number
const str = identity<string>("hello"); // Type: string
const auto = identity(true); // Type inferred: boolean
```
**Generic Constraints:**
```typescript
interface HasLength {
length: number;
}
function logLength<T extends HasLength>(item: T): T {
console.log(item.length);
return item;
}
logLength("hello"); // OK: string has length
logLength([1, 2, 3]); // OK: array has length
logLength({ length: 10 }); // OK: object has length
// logLength(42); // Error: number has no length
```
**Multiple Type Parameters:**
```typescript
function merge<T, U>(obj1: T, obj2: U): T & U {
return { ...obj1, ...obj2 };
}
const merged = merge(
{ name: "John" },
{ age: 30 }
);
// Type: { name: string } & { age: number }
```
### 2. Conditional Types
**Purpose:** Create types that depend on conditions, enabling sophisticated type logic.
**Basic Conditional Type:**
```typescript
type IsString<T> = T extends string ? true : false;
type A = IsString<string>; // true
type B = IsString<number>; // false
```
**Extracting Return Types:**
```typescript
type ReturnType<T> = T extends (...args: any[]) => infer R ? R : never;
function getUser() {
return { id: 1, name: "John" };
}
type User = ReturnType<typeof getUser>;
// Type: { id: number; name: string; }
```
**Distributive Conditional Types:**
```typescript
type ToArray<T> = T extends any ? T[] : never;
type StrOrNumArray = ToArray<string | number>;
// Type: string[] | number[]
```
**Nested Conditions:**
```typescript
type TypeName<T> =
T extends string ? "string" :
T extends number ? "number" :
T extends boolean ? "boolean" :
T extends undefined ? "undefined" :
T extends Function ? "function" :
"object";
type T1 = TypeName<string>; // "string"
type T2 = TypeName<() => void>; // "function"
```
### 3. Mapped Types
**Purpose:** Transform existing types by iterating over their properties.
**Basic Mapped Type:**
```typescript
type Readonly<T> = {
readonly [P in keyof T]: T[P];
};
interface User {
id: number;
name: string;
}
type ReadonlyUser = Readonly<User>;
// Type: { readonly id: number; readonly name: string; }
```
**Optional Properties:**
```typescript
type Partial<T> = {
[P in keyof T]?: T[P];
};
type PartialUser = Partial<User>;
// Type: { id?: number; name?: string; }
```
**Key Remapping:**
```typescript
type Getters<T> = {
[K in keyof T as `get${Capitalize<string & K>}`]: () => T[K]
};
interface Person {
name: string;
age: number;
}
type PersonGetters = Getters<Person>;
// Type: { getName: () => string; getAge: () => number; }
```
**Filtering Properties:**
```typescript
type PickByType<T, U> = {
[K in keyof T as T[K] extends U ? K : never]: T[K]
};
interface Mixed {
id: number;
name: string;
age: number;
active: boolean;
}
type OnlyNumbers = PickByType<Mixed, number>;
// Type: { id: number; age: number; }
```
### 4. Template Literal Types
**Purpose:** Create string-based types with pattern matching and transformation.
**Basic Template Literal:**
```typescript
type EventName = "click" | "focus" | "blur";
type EventHandler = `on${Capitalize<EventName>}`;
// Type: "onClick" | "onFocus" | "onBlur"
```
**String Manipulation:**
```typescript
type UppercaseGreeting = Uppercase<"hello">; // "HELLO"
type LowercaseGreeting = Lowercase<"HELLO">; // "hello"
type CapitalizedName = Capitalize<"john">; // "John"
type UncapitalizedName = Uncapitalize<"John">; // "john"
```
**Path Building:**
```typescript
type Path<T> = T extends object
? { [K in keyof T]: K extends string
? `${K}` | `${K}.${Path<T[K]>}`
: never
}[keyof T]
: never;
interface Config {
server: {
host: string;
port: number;
};
database: {
url: string;
};
}
type ConfigPath = Path<Config>;
// Type: "server" | "database" | "server.host" | "server.port" | "database.url"
```
### 5. Utility Types
**Built-in Utility Types:**
```typescript
// Partial<T> - Make all properties optional
type PartialUser = Partial<User>;
// Required<T> - Make all properties required
type RequiredUser = Required<PartialUser>;
// Readonly<T> - Make all properties readonly
type ReadonlyUser = Readonly<User>;
// Pick<T, K> - Select specific properties
type UserName = Pick<User, "name" | "email">;
// Omit<T, K> - Remove specific properties
type UserWithoutPassword = Omit<User, "password">;
// Exclude<T, U> - Exclude types from union
type T1 = Exclude<"a" | "b" | "c", "a">; // "b" | "c"
// Extract<T, U> - Extract types from union
type T2 = Extract<"a" | "b" | "c", "a" | "b">; // "a" | "b"
// NonNullable<T> - Exclude null and undefined
type T3 = NonNullable<string | null | undefined>; // string
// Record<K, T> - Create object type with keys K and values T
type PageInfo = Record<"home" | "about", { title: string }>;
```
## Advanced Patterns
### Pattern 1: Type-Safe Event Emitter
```typescript
type EventMap = {
"user:created": { id: string; name: string };
"user:updated": { id: string };
"user:deleted": { id: string };
};
class TypedEventEmitter<T extends Record<string, any>> {
private listeners: {
[K in keyof T]?: Array<(data: T[K]) => void>;
} = {};
on<K extends keyof T>(event: K, callback: (data: T[K]) => void): void {
if (!this.listeners[event]) {
this.listeners[event] = [];
}
this.listeners[event]!.push(callback);
}
emit<K extends keyof T>(event: K, data: T[K]): void {
const callbacks = this.listeners[event];
if (callbacks) {
callbacks.forEach(callback => callback(data));
}
}
}
const emitter = new TypedEventEmitter<EventMap>();
emitter.on("user:created", (data) => {
console.log(data.id, data.name); // Type-safe!
});
emitter.emit("user:created", { id: "1", name: "John" });
// emitter.emit("user:created", { id: "1" }); // Error: missing 'name'
```
### Pattern 2: Type-Safe API Client
```typescript
type HTTPMethod = "GET" | "POST" | "PUT" | "DELETE";
type EndpointConfig = {
"/users": {
GET: { response: User[] };
POST: { body: { name: string; email: string }; response: User };
};
"/users/:id": {
GET: { params: { id: string }; response: User };
PUT: { params: { id: string }; body: Partial<User>; response: User };
DELETE: { params: { id: string }; response: void };
};
};
type ExtractParams<T> = T extends { params: infer P } ? P : never;
type ExtractBody<T> = T extends { body: infer B } ? B : never;
type ExtractResponse<T> = T extends { response: infer R } ? R : never;
class APIClient<Config extends Record<string, Record<HTTPMethod, any>>> {
async request<
Path extends keyof Config,
Method extends keyof Config[Path]
>(
path: Path,
method: Method,
...[options]: ExtractParams<Config[Path][Method]> extends never
? ExtractBody<Config[Path][Method]> extends never
? []
: [{ body: ExtractBody<Config[Path][Method]> }]
: [{
params: ExtractParams<Config[Path][Method]>;
body?: ExtractBody<Config[Path][Method]>;
}]
): Promise<ExtractResponse<Config[Path][Method]>> {
// Implementation here
return {} as any;
}
}
const api = new APIClient<EndpointConfig>();
// Type-safe API calls
const users = await api.request("/users", "GET");
// Type: User[]
const newUser = await api.request("/users", "POST", {
body: { name: "John", email: "john@example.com" }
});
// Type: User
const user = await api.request("/users/:id", "GET", {
params: { id: "123" }
});
// Type: User
```
### Pattern 3: Builder Pattern with Type Safety
```typescript
type BuilderState<T> = {
[K in keyof T]: T[K] | undefined;
};
type RequiredKeys<T> = {
[K in keyof T]-?: {} extends Pick<T, K> ? never : K;
}[keyof T];
type OptionalKeys<T> = {
[K in keyof T]-?: {} extends Pick<T, K> ? K : never;
}[keyof T];
type IsComplete<T, S> =
RequiredKeys<T> extends keyof S
? S[RequiredKeys<T>] extends undefined
? false
: true
: false;
class Builder<T, S extends BuilderState<T> = {}> {
private state: S = {} as S;
set<K extends keyof T>(
key: K,
value: T[K]
): Builder<T, S & Record<K, T[K]>> {
this.state[key] = value;
return this as any;
}
build(
this: IsComplete<T, S> extends true ? this : never
): T {
return this.state as T;
}
}
interface User {
id: string;
name: string;
email: string;
age?: number;
}
const builder = new Builder<User>();
const user = builder
.set("id", "1")
.set("name", "John")
.set("email", "john@example.com")
.build(); // OK: all required fields set
// const incomplete = builder
// .set("id", "1")
// .build(); // Error: missing required fields
```
### Pattern 4: Deep Readonly/Partial
```typescript
type DeepReadonly<T> = {
readonly [P in keyof T]: T[P] extends object
? T[P] extends Function
? T[P]
: DeepReadonly<T[P]>
: T[P];
};
type DeepPartial<T> = {
[P in keyof T]?: T[P] extends object
? T[P] extends Array<infer U>
? Array<DeepPartial<U>>
: DeepPartial<T[P]>
: T[P];
};
interface Config {
server: {
host: string;
port: number;
ssl: {
enabled: boolean;
cert: string;
};
};
database: {
url: string;
pool: {
min: number;
max: number;
};
};
}
type ReadonlyConfig = DeepReadonly<Config>;
// All nested properties are readonly
type PartialConfig = DeepPartial<Config>;
// All nested properties are optional
```
### Pattern 5: Type-Safe Form Validation
```typescript
type ValidationRule<T> = {
validate: (value: T) => boolean;
message: string;
};
type FieldValidation<T> = {
[K in keyof T]?: ValidationRule<T[K]>[];
};
type ValidationErrors<T> = {
[K in keyof T]?: string[];
};
class FormValidator<T extends Record<string, any>> {
constructor(private rules: FieldValidation<T>) {}
validate(data: T): ValidationErrors<T> | null {
const errors: ValidationErrors<T> = {};
let hasErrors = false;
for (const key in this.rules) {
const fieldRules = this.rules[key];
const value = data[key];
if (fieldRules) {
const fieldErrors: string[] = [];
for (const rule of fieldRules) {
if (!rule.validate(value)) {
fieldErrors.push(rule.message);
}
}
if (fieldErrors.length > 0) {
errors[key] = fieldErrors;
hasErrors = true;
}
}
}
return hasErrors ? errors : null;
}
}
interface LoginForm {
email: string;
password: string;
}
const validator = new FormValidator<LoginForm>({
email: [
{
validate: (v) => v.includes("@"),
message: "Email must contain @"
},
{
validate: (v) => v.length > 0,
message: "Email is required"
}
],
password: [
{
validate: (v) => v.length >= 8,
message: "Password must be at least 8 characters"
}
]
});
const errors = validator.validate({
email: "invalid",
password: "short"
});
// Type: { email?: string[]; password?: string[]; } | null
```
### Pattern 6: Discriminated Unions
```typescript
type Success<T> = {
status: "success";
data: T;
};
type Error = {
status: "error";
error: string;
};
type Loading = {
status: "loading";
};
type AsyncState<T> = Success<T> | Error | Loading;
function handleState<T>(state: AsyncState<T>): void {
switch (state.status) {
case "success":
console.log(state.data); // Type: T
break;
case "error":
console.log(state.error); // Type: string
break;
case "loading":
console.log("Loading...");
break;
}
}
// Type-safe state machine
type State =
| { type: "idle" }
| { type: "fetching"; requestId: string }
| { type: "success"; data: any }
| { type: "error"; error: Error };
type Event =
| { type: "FETCH"; requestId: string }
| { type: "SUCCESS"; data: any }
| { type: "ERROR"; error: Error }
| { type: "RESET" };
function reducer(state: State, event: Event): State {
switch (state.type) {
case "idle":
return event.type === "FETCH"
? { type: "fetching", requestId: event.requestId }
: state;
case "fetching":
if (event.type === "SUCCESS") {
return { type: "success", data: event.data };
}
if (event.type === "ERROR") {
return { type: "error", error: event.error };
}
return state;
case "success":
case "error":
return event.type === "RESET" ? { type: "idle" } : state;
}
}
```
## Type Inference Techniques
### 1. Infer Keyword
```typescript
// Extract array element type
type ElementType<T> = T extends (infer U)[] ? U : never;
type NumArray = number[];
type Num = ElementType<NumArray>; // number
// Extract promise type
type PromiseType<T> = T extends Promise<infer U> ? U : never;
type AsyncNum = PromiseType<Promise<number>>; // number
// Extract function parameters
type Parameters<T> = T extends (...args: infer P) => any ? P : never;
function foo(a: string, b: number) {}
type FooParams = Parameters<typeof foo>; // [string, number]
```
### 2. Type Guards
```typescript
function isString(value: unknown): value is string {
return typeof value === "string";
}
function isArrayOf<T>(
value: unknown,
guard: (item: unknown) => item is T
): value is T[] {
return Array.isArray(value) && value.every(guard);
}
const data: unknown = ["a", "b", "c"];
if (isArrayOf(data, isString)) {
data.forEach(s => s.toUpperCase()); // Type: string[]
}
```
### 3. Assertion Functions
```typescript
function assertIsString(value: unknown): asserts value is string {
if (typeof value !== "string") {
throw new Error("Not a string");
}
}
function processValue(value: unknown) {
assertIsString(value);
// value is now typed as string
console.log(value.toUpperCase());
}
```
## Best Practices
1. **Use `unknown` over `any`**: Enforce type checking
2. **Prefer `interface` for object shapes**: Better error messages
3. **Use `type` for unions and complex types**: More flexible
4. **Leverage type inference**: Let TypeScript infer when possible
5. **Create helper types**: Build reusable type utilities
6. **Use const assertions**: Preserve literal types
7. **Avoid type assertions**: Use type guards instead
8. **Document complex types**: Add JSDoc comments
9. **Use strict mode**: Enable all strict compiler options
10. **Test your types**: Use type tests to verify type behavior
## Type Testing
```typescript
// Type assertion tests
type AssertEqual<T, U> =
[T] extends [U]
? [U] extends [T]
? true
: false
: false;
type Test1 = AssertEqual<string, string>; // true
type Test2 = AssertEqual<string, number>; // false
type Test3 = AssertEqual<string | number, string>; // false
// Expect error helper
type ExpectError<T extends never> = T;
// Example usage
type ShouldError = ExpectError<AssertEqual<string, number>>;
```
## Common Pitfalls
1. **Over-using `any`**: Defeats the purpose of TypeScript
2. **Ignoring strict null checks**: Can lead to runtime errors
3. **Too complex types**: Can slow down compilation
4. **Not using discriminated unions**: Misses type narrowing opportunities
5. **Forgetting readonly modifiers**: Allows unintended mutations
6. **Circular type references**: Can cause compiler errors
7. **Not handling edge cases**: Like empty arrays or null values
## Performance Considerations
- Avoid deeply nested conditional types
- Use simple types when possible
- Cache complex type computations
- Limit recursion depth in recursive types
- Use build tools to skip type checking in production
## Resources
- **TypeScript Handbook**: https://www.typescriptlang.org/docs/handbook/
- **Type Challenges**: https://github.com/type-challenges/type-challenges
- **TypeScript Deep Dive**: https://basarat.gitbook.io/typescript/
- **Effective TypeScript**: Book by Dan Vanderkam