Files
gh-giuseppe-trisciuoglio-de…/skills/langchain4j/langchain4j-ai-services-patterns/references/references.md
2025-11-29 18:28:30 +08:00

434 lines
12 KiB
Markdown

# LangChain4j AI Services - API References
Complete API reference for LangChain4j AI Services patterns.
## Core Interfaces and Classes
### AiServices Builder
**Purpose**: Creates implementations of custom Java interfaces backed by LLM capabilities.
```java
public class AiServices {
static <T> AiServicesBuilder<T> builder(Class<T> aiService)
// Create builder for an AI service interface
static <T> T create(Class<T> aiService, ChatModel chatModel)
// Quick creation with just chat model
static <T> T builder(Class<T> aiService)
.chatModel(ChatModel chatModel) // Required for sync
.streamingChatModel(StreamingChatModel) // Required for streaming
.chatMemory(ChatMemory) // Single shared memory
.chatMemoryProvider(ChatMemoryProvider) // Per-user memory
.tools(Object... tools) // Register tool objects
.toolProvider(ToolProvider) // Dynamic tool selection
.contentRetriever(ContentRetriever) // For RAG
.retrievalAugmentor(RetrievalAugmentor) // Advanced RAG
.moderationModel(ModerationModel) // Content moderation
.build() // Build the implementation
}
```
### Core Annotations
**@SystemMessage**: Define system prompt for the AI service.
```java
@SystemMessage("You are a helpful Java developer")
String chat(String userMessage);
// Template variables
@SystemMessage("You are a {{expertise}} expert")
String explain(@V("expertise") String domain, String question);
```
**@UserMessage**: Define user message template.
```java
@UserMessage("Translate to {{language}}: {{text}}")
String translate(@V("language") String lang, @V("text") String text);
// With method parameters matching template
@UserMessage("Summarize: {{it}}")
String summarize(String text); // {{it}} refers to parameter
```
**@MemoryId**: Create separate memory context per identifier.
```java
interface MultiUserChat {
String chat(@MemoryId String userId, String message);
String chat(@MemoryId int sessionId, String message);
}
```
**@V**: Map method parameter to template variable.
```java
@UserMessage("Write {{type}} code for {{language}}")
String writeCode(@V("type") String codeType, @V("language") String lang);
```
### ChatMemory Implementations
**MessageWindowChatMemory**: Keeps last N messages.
```java
ChatMemory memory = MessageWindowChatMemory.withMaxMessages(10);
// Or with explicit builder
ChatMemory memory = MessageWindowChatMemory.builder()
.maxMessages(10)
.build();
```
**ChatMemoryProvider**: Factory for creating per-user memory.
```java
ChatMemoryProvider provider = memoryId ->
MessageWindowChatMemory.withMaxMessages(20);
```
### Tool Integration
**@Tool**: Mark methods that LLM can call.
```java
@Tool("Calculate sum of two numbers")
int add(@P("first number") int a, @P("second number") int b) {
return a + b;
}
```
**@P**: Parameter description for LLM.
```java
@Tool("Search documents")
List<Document> search(
@P("search query") String query,
@P("max results") int limit
) { ... }
```
**ToolProvider**: Dynamic tool selection based on context.
```java
interface DynamicToolAssistant {
String execute(String command);
}
ToolProvider provider = context ->
context.contains("calculate") ? new Calculator() : new DataService();
```
### Structured Output
**@Description**: Annotate output fields for extraction.
```java
class Person {
@Description("Person's full name")
String name;
@Description("Age in years")
int age;
}
interface Extractor {
@UserMessage("Extract person from: {{it}}")
Person extract(String text);
}
```
### Error Handling
**ToolExecutionErrorHandler**: Handle tool execution failures.
```java
.toolExecutionErrorHandler((request, exception) -> {
logger.error("Tool failed: " + request.name(), exception);
return "Tool execution failed: " + exception.getMessage();
})
```
**ToolArgumentsErrorHandler**: Handle malformed tool arguments.
```java
.toolArgumentsErrorHandler((request, exception) -> {
logger.warn("Invalid arguments for " + request.name());
return "Please provide valid arguments";
})
```
## Streaming APIs
### TokenStream
**Purpose**: Handle streaming LLM responses token-by-token.
```java
interface StreamingAssistant {
TokenStream streamChat(String message);
}
TokenStream stream = assistant.streamChat("Tell me a story");
stream
.onNext(token -> {
// Process each token
System.out.print(token);
})
.onCompleteResponse(response -> {
// Full response available
System.out.println("\nTokens used: " + response.tokenUsage());
})
.onError(error -> {
System.err.println("Error: " + error);
})
.onToolExecuted(toolExecution -> {
System.out.println("Tool: " + toolExecution.request().name());
})
.onRetrieved(contents -> {
// RAG content retrieved
contents.forEach(c -> System.out.println(c.textSegment()));
})
.start();
```
### StreamingChatResponseHandler
**Purpose**: Callback-based streaming without TokenStream.
```java
streamingModel.chat(request, new StreamingChatResponseHandler() {
@Override
public void onPartialResponse(String partialResponse) {
System.out.print(partialResponse);
}
@Override
public void onCompleteResponse(ChatResponse response) {
System.out.println("\nComplete!");
}
@Override
public void onError(Throwable error) {
error.printStackTrace();
}
});
```
## Content Retrieval
### ContentRetriever Interface
**Purpose**: Fetch relevant content for RAG.
```java
interface ContentRetriever {
Content retrieve(Query query);
List<Content> retrieveAll(List<Query> queries);
}
```
### EmbeddingStoreContentRetriever
```java
ContentRetriever retriever = EmbeddingStoreContentRetriever.builder()
.embeddingStore(embeddingStore)
.embeddingModel(embeddingModel)
.maxResults(5) // Default max results
.minScore(0.7) // Similarity threshold
.dynamicMaxResults(query -> 10) // Query-dependent
.dynamicMinScore(query -> 0.8) // Query-dependent
.filter(new IsEqualTo("userId", "123")) // Metadata filter
.dynamicFilter(query -> {...}) // Dynamic filter
.build();
```
### RetrievalAugmentor
**Purpose**: Advanced RAG pipeline with query transformation and re-ranking.
```java
RetrievalAugmentor augmentor = DefaultRetrievalAugmentor.builder()
.queryTransformer(new CompressingQueryTransformer(chatModel))
.contentRetriever(contentRetriever)
.contentAggregator(ReRankingContentAggregator.builder()
.scoringModel(scoringModel)
.minScore(0.8)
.build())
.build();
// Use with AI Service
var assistant = AiServices.builder(Assistant.class)
.chatModel(chatModel)
.retrievalAugmentor(augmentor)
.build();
```
## Request/Response Models
### ChatRequest
**Purpose**: Build complex chat requests with multiple messages.
```java
ChatRequest request = ChatRequest.builder()
.messages(
SystemMessage.from("You are helpful"),
UserMessage.from("What is AI?"),
AiMessage.from("AI is...")
)
.temperature(0.7)
.maxTokens(500)
.topP(0.95)
.build();
ChatResponse response = chatModel.chat(request);
```
### ChatResponse
**Purpose**: Access chat model responses and metadata.
```java
String content = response.aiMessage().text();
TokenUsage usage = response.tokenUsage();
System.out.println("Tokens: " + usage.totalTokenCount());
System.out.println("Prompt tokens: " + usage.inputTokenCount());
System.out.println("Completion tokens: " + usage.outputTokenCount());
System.out.println("Finish reason: " + response.finishReason());
```
## Query and Content
### Query
**Purpose**: Represent a user query in retrieval context.
```java
// Query object contains:
String text // The query text
Metadata metadata() // Query metadata (e.g., userId)
Object metadata(String key) // Get metadata value
Object metadata(String key, Object defaultValue)
```
### Content
**Purpose**: Retrieved content with metadata.
```java
String textSegment() // Retrieved text
double score() // Relevance score
Metadata metadata() // Content metadata (e.g., source)
Map<String, Object> source() // Original source data
```
## Message Types
### SystemMessage
```java
SystemMessage message = SystemMessage.from("You are a code reviewer");
```
### UserMessage
```java
UserMessage message = UserMessage.from("Review this code");
// With images
UserMessage message = UserMessage.from(
TextContent.from("Analyze this"),
ImageContent.from("http://...", "image/png")
);
```
### AiMessage
```java
AiMessage message = AiMessage.from("Here's my analysis");
// With tool calls
AiMessage message = AiMessage.from(
"Let me calculate",
ToolExecutionResultMessage.from(toolName, result)
);
```
## Configuration Patterns
### Chat Model Configuration
```java
ChatModel model = OpenAiChatModel.builder()
.apiKey(System.getenv("OPENAI_API_KEY"))
.modelName("gpt-4o-mini") // Model selection
.temperature(0.7) // Creativity (0-2)
.topP(0.95) // Diversity (0-1)
.topK(40) // Top K tokens
.maxTokens(2000) // Max generation
.frequencyPenalty(0.0) // Reduce repetition
.presencePenalty(0.0) // Reduce topic switching
.seed(42) // Reproducibility
.logRequests(true) // Debug logging
.logResponses(true) // Debug logging
.build();
```
### Embedding Model Configuration
```java
EmbeddingModel embedder = OpenAiEmbeddingModel.builder()
.apiKey(System.getenv("OPENAI_API_KEY"))
.modelName("text-embedding-3-small")
.dimensions(512) // Custom dimensions
.build();
```
## Best Practices for API Usage
1. **Type Safety**: Always define typed interfaces for type safety at compile time
2. **Separation of Concerns**: Use different interfaces for different domains
3. **Error Handling**: Always implement error handlers for tools
4. **Memory Management**: Choose appropriate memory implementation for use case
5. **Token Optimization**: Use temperature=0 for deterministic tasks
6. **Testing**: Mock ChatModel for unit tests
7. **Logging**: Enable request/response logging in development
8. **Rate Limiting**: Implement backoff strategies for API calls
9. **Caching**: Cache responses for frequently asked questions
10. **Monitoring**: Track token usage for cost management
## Common Patterns
### Factory Pattern for Multiple Assistants
```java
public class AssistantFactory {
static JavaExpert createJavaExpert() {
return AiServices.create(JavaExpert.class, chatModel);
}
static PythonExpert createPythonExpert() {
return AiServices.create(PythonExpert.class, chatModel);
}
}
```
### Decorator Pattern for Enhanced Functionality
```java
public class LoggingAssistant implements Assistant {
private final Assistant delegate;
public String chat(String message) {
logger.info("User: " + message);
String response = delegate.chat(message);
logger.info("Assistant: " + response);
return response;
}
}
```
### Builder Pattern for Complex Configurations
```java
var assistant = AiServices.builder(ComplexAssistant.class)
.chatModel(getChatModel())
.chatMemory(getMemory())
.tools(getTool1(), getTool2())
.contentRetriever(getRetriever())
.build();
```
## Resources
- [LangChain4j Documentation](https://docs.langchain4j.dev)
- [OpenAI API Reference](https://platform.openai.com/docs)
- [LangChain4j GitHub](https://github.com/langchain4j/langchain4j)
- [LangChain4j Examples](https://github.com/langchain4j/langchain4j-examples)