Files
gh-giuseppe-trisciuoglio-de…/skills/ai/chunking-strategy/references/evaluation.md
2025-11-29 18:28:30 +08:00

30 KiB

Performance Evaluation Framework

This document provides comprehensive methodologies for evaluating chunking strategy performance and effectiveness.

Evaluation Metrics

Core Retrieval Metrics

Retrieval Precision

Measures the fraction of retrieved chunks that are relevant to the query.

def calculate_precision(retrieved_chunks: List[Dict], relevant_chunks: List[Dict]) -> float:
    """
    Calculate retrieval precision
    Precision = |Relevant ∩ Retrieved| / |Retrieved|
    """
    retrieved_ids = {chunk.get('id') for chunk in retrieved_chunks}
    relevant_ids = {chunk.get('id') for chunk in relevant_chunks}

    intersection = retrieved_ids & relevant_ids

    if not retrieved_ids:
        return 0.0

    return len(intersection) / len(retrieved_ids)

Retrieval Recall

Measures the fraction of relevant chunks that are successfully retrieved.

def calculate_recall(retrieved_chunks: List[Dict], relevant_chunks: List[Dict]) -> float:
    """
    Calculate retrieval recall
    Recall = |Relevant ∩ Retrieved| / |Relevant|
    """
    retrieved_ids = {chunk.get('id') for chunk in retrieved_chunks}
    relevant_ids = {chunk.get('id') for chunk in relevant_chunks}

    intersection = retrieved_ids & relevant_ids

    if not relevant_ids:
        return 0.0

    return len(intersection) / len(relevant_ids)

F1-Score

Harmonic mean of precision and recall.

def calculate_f1_score(precision: float, recall: float) -> float:
    """
    Calculate F1-score
    F1 = 2 * (Precision * Recall) / (Precision + Recall)
    """
    if precision + recall == 0:
        return 0.0

    return 2 * (precision * recall) / (precision + recall)

Mean Reciprocal Rank (MRR)

Measures the rank of the first relevant result.

def calculate_mrr(queries: List[Dict], results: List[List[Dict]]) -> float:
    """
    Calculate Mean Reciprocal Rank
    """
    reciprocal_ranks = []

    for query, query_results in zip(queries, results):
        relevant_found = False

        for rank, result in enumerate(query_results, 1):
            if result.get('is_relevant', False):
                reciprocal_ranks.append(1.0 / rank)
                relevant_found = True
                break

        if not relevant_found:
            reciprocal_ranks.append(0.0)

    return sum(reciprocal_ranks) / len(reciprocal_ranks)

Mean Average Precision (MAP)

Considers both precision and the ranking of relevant documents.

def calculate_average_precision(retrieved_chunks: List[Dict], relevant_chunks: List[Dict]) -> float:
    """
    Calculate Average Precision for a single query
    """
    retrieved_ids = {chunk.get('id') for chunk in retrieved_chunks}
    relevant_ids = {chunk.get('id') for chunk in relevant_chunks}

    if not relevant_ids:
        return 0.0

    precisions = []
    relevant_count = 0

    for rank, chunk in enumerate(retrieved_chunks, 1):
        if chunk.get('id') in relevant_ids:
            relevant_count += 1
            precision_at_rank = relevant_count / rank
            precisions.append(precision_at_rank)

    return sum(precisions) / len(relevant_ids) if relevant_ids else 0.0

def calculate_map(queries: List[Dict], results: List[List[Dict]]) -> float:
    """
    Calculate Mean Average Precision across multiple queries
    """
    average_precisions = []

    for query, query_results in zip(queries, results):
        ap = calculate_average_precision(query_results, query.get('relevant_chunks', []))
        average_precisions.append(ap)

    return sum(average_precisions) / len(average_precisions) if average_precisions else 0.0

Normalized Discounted Cumulative Gain (NDCG)

Measures ranking quality with emphasis on highly relevant results.

def calculate_dcg(retrieved_chunks: List[Dict]) -> float:
    """
    Calculate Discounted Cumulative Gain
    """
    dcg = 0.0

    for rank, chunk in enumerate(retrieved_chunks, 1):
        relevance = chunk.get('relevance_score', 0)
        dcg += relevance / np.log2(rank + 1)

    return dcg

def calculate_ndcg(retrieved_chunks: List[Dict], ideal_chunks: List[Dict]) -> float:
    """
    Calculate Normalized Discounted Cumulative Gain
    """
    dcg = calculate_dcg(retrieved_chunks)
    idcg = calculate_dcg(ideal_chunks)

    if idcg == 0:
        return 0.0

    return dcg / idcg

End-to-End RAG Evaluation

Answer Quality Metrics

Factual Consistency

Measures how well the generated answer aligns with retrieved chunks.

import spacy
from transformers import pipeline

class FactualConsistencyEvaluator:
    def __init__(self):
        self.nlp = spacy.load("en_core_web_sm")
        self.nli_pipeline = pipeline("text-classification",
                                   model="roberta-large-mnli")

    def evaluate_consistency(self, answer: str, retrieved_chunks: List[str]) -> float:
        """
        Evaluate factual consistency between answer and retrieved context
        """
        if not retrieved_chunks:
            return 0.0

        # Combine retrieved chunks as context
        context = " ".join(retrieved_chunks[:3])  # Use top 3 chunks

        # Use Natural Language Inference to check consistency
        result = self.nli_pipeline(f"premise: {context} hypothesis: {answer}")

        # Extract consistency score (entailment probability)
        for item in result:
            if item['label'] == 'ENTAILMENT':
                return item['score']
            elif item['label'] == 'CONTRADICTION':
                return 1.0 - item['score']

        return 0.5  # Neutral if NLI is inconclusive

Answer Completeness

Measures how completely the answer addresses the user's query.

def evaluate_completeness(answer: str, query: str, reference_answer: str = None) -> float:
    """
    Evaluate answer completeness
    """
    # Extract key entities from query
    query_entities = extract_entities(query)
    answer_entities = extract_entities(answer)

    # Calculate entity coverage
    if not query_entities:
        return 0.5  # Neutral if no entities in query

    covered_entities = query_entities & answer_entities
    entity_coverage = len(covered_entities) / len(query_entities)

    # If reference answer is available, compare against it
    if reference_answer:
        reference_entities = extract_entities(reference_answer)
        answer_reference_overlap = len(answer_entities & reference_entities) / max(len(reference_entities), 1)
        return (entity_coverage + answer_reference_overlap) / 2

    return entity_coverage

def extract_entities(text: str) -> set:
    """
    Extract named entities from text (simplified)
    """
    # This would use a proper NER model in practice
    import re

    # Simple noun phrase extraction as placeholder
    noun_phrases = re.findall(r'\b[A-Z][a-z]+(?:\s+[A-Z][a-z]+)*\b', text)
    return set(noun_phrases)

Response Relevance

Measures how relevant the answer is to the original query.

from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity

class RelevanceEvaluator:
    def __init__(self, model_name="all-MiniLM-L6-v2"):
        self.model = SentenceTransformer(model_name)

    def evaluate_relevance(self, query: str, answer: str) -> float:
        """
        Evaluate semantic relevance between query and answer
        """
        # Generate embeddings
        query_embedding = self.model.encode([query])
        answer_embedding = self.model.encode([answer])

        # Calculate cosine similarity
        similarity = cosine_similarity(query_embedding, answer_embedding)[0][0]

        return float(similarity)

Performance Metrics

Processing Time

import time
from dataclasses import dataclass
from typing import List, Dict

@dataclass
class PerformanceMetrics:
    total_time: float
    chunking_time: float
    embedding_time: float
    search_time: float
    generation_time: float
    throughput: float  # documents per second

class PerformanceProfiler:
    def __init__(self):
        self.timings = {}
        self.start_times = {}

    def start_timer(self, operation: str):
        self.start_times[operation] = time.time()

    def end_timer(self, operation: str):
        if operation in self.start_times:
            duration = time.time() - self.start_times[operation]
            if operation not in self.timings:
                self.timings[operation] = []
            self.timings[operation].append(duration)
            return duration
        return 0.0

    def get_performance_metrics(self, document_count: int) -> PerformanceMetrics:
        total_time = sum(sum(times) for times in self.timings.values())

        return PerformanceMetrics(
            total_time=total_time,
            chunking_time=sum(self.timings.get('chunking', [0])),
            embedding_time=sum(self.timings.get('embedding', [0])),
            search_time=sum(self.timings.get('search', [0])),
            generation_time=sum(self.timings.get('generation', [0])),
            throughput=document_count / total_time if total_time > 0 else 0
        )

Memory Usage

import psutil
import os
from typing import Dict, List

class MemoryProfiler:
    def __init__(self):
        self.process = psutil.Process(os.getpid())
        self.memory_snapshots = []

    def take_memory_snapshot(self, label: str):
        """Take a snapshot of current memory usage"""
        memory_info = self.process.memory_info()
        memory_mb = memory_info.rss / 1024 / 1024  # Convert to MB

        self.memory_snapshots.append({
            'label': label,
            'memory_mb': memory_mb,
            'timestamp': time.time()
        })

    def get_peak_memory_usage(self) -> float:
        """Get peak memory usage in MB"""
        if not self.memory_snapshots:
            return 0.0
        return max(snapshot['memory_mb'] for snapshot in self.memory_snapshots)

    def get_memory_usage_by_operation(self) -> Dict[str, float]:
        """Get memory usage breakdown by operation"""
        if not self.memory_snapshots:
            return {}

        memory_by_op = {}
        for i in range(1, len(self.memory_snapshots)):
            prev_snapshot = self.memory_snapshots[i-1]
            curr_snapshot = self.memory_snapshots[i]

            operation = curr_snapshot['label']
            memory_delta = curr_snapshot['memory_mb'] - prev_snapshot['memory_mb']

            if operation not in memory_by_op:
                memory_by_op[operation] = []
            memory_by_op[operation].append(memory_delta)

        return {op: sum(deltas) for op, deltas in memory_by_op.items()}

Evaluation Datasets

Standardized Test Sets

Question-Answer Pairs

from dataclasses import dataclass
from typing import List, Optional
import json

@dataclass
class EvaluationQuery:
    id: str
    question: str
    reference_answer: Optional[str]
    relevant_chunk_ids: List[str]
    query_type: str  # factoid, analytical, comparative
    difficulty: str  # easy, medium, hard
    domain: str  # finance, medical, legal, technical

class EvaluationDataset:
    def __init__(self, name: str):
        self.name = name
        self.queries: List[EvaluationQuery] = []
        self.documents: Dict[str, str] = {}
        self.chunks: Dict[str, Dict] = {}

    def add_query(self, query: EvaluationQuery):
        self.queries.append(query)

    def add_document(self, doc_id: str, content: str):
        self.documents[doc_id] = content

    def add_chunk(self, chunk_id: str, content: str, doc_id: str, metadata: Dict):
        self.chunks[chunk_id] = {
            'id': chunk_id,
            'content': content,
            'doc_id': doc_id,
            'metadata': metadata
        }

    def save_to_file(self, filepath: str):
        data = {
            'name': self.name,
            'queries': [
                {
                    'id': q.id,
                    'question': q.question,
                    'reference_answer': q.reference_answer,
                    'relevant_chunk_ids': q.relevant_chunk_ids,
                    'query_type': q.query_type,
                    'difficulty': q.difficulty,
                    'domain': q.domain
                }
                for q in self.queries
            ],
            'documents': self.documents,
            'chunks': self.chunks
        }

        with open(filepath, 'w') as f:
            json.dump(data, f, indent=2)

    @classmethod
    def load_from_file(cls, filepath: str):
        with open(filepath, 'r') as f:
            data = json.load(f)

        dataset = cls(data['name'])
        dataset.documents = data['documents']
        dataset.chunks = data['chunks']

        for q_data in data['queries']:
            query = EvaluationQuery(
                id=q_data['id'],
                question=q_data['question'],
                reference_answer=q_data.get('reference_answer'),
                relevant_chunk_ids=q_data['relevant_chunk_ids'],
                query_type=q_data['query_type'],
                difficulty=q_data['difficulty'],
                domain=q_data['domain']
            )
            dataset.add_query(query)

        return dataset

Dataset Generation

Synthetic Query Generation

import random
from typing import List, Dict

class SyntheticQueryGenerator:
    def __init__(self):
        self.query_templates = {
            'factoid': [
                "What is {concept}?",
                "When did {event} occur?",
                "Who developed {technology}?",
                "How many {items} are mentioned?",
                "What is the value of {metric}?"
            ],
            'analytical': [
                "Compare and contrast {concept1} and {concept2}.",
                "Analyze the impact of {concept} on {domain}.",
                "What are the advantages and disadvantages of {technology}?",
                "Explain the relationship between {concept1} and {concept2}.",
                "Evaluate the effectiveness of {approach} for {problem}."
            ],
            'comparative': [
                "Which is better: {option1} or {option2}?",
                "How does {method1} differ from {method2}?",
                "Compare the performance of {system1} and {system2}.",
                "What are the key differences between {approach1} and {approach2}?"
            ]
        }

    def generate_queries_from_chunks(self, chunks: List[Dict], num_queries: int = 100) -> List[EvaluationQuery]:
        """Generate synthetic queries from document chunks"""
        queries = []

        # Extract entities and concepts from chunks
        entities = self._extract_entities_from_chunks(chunks)

        for i in range(num_queries):
            query_type = random.choice(['factoid', 'analytical', 'comparative'])
            template = random.choice(self.query_templates[query_type])

            # Fill template with extracted entities
            query_text = self._fill_template(template, entities)

            # Find relevant chunks for this query
            relevant_chunks = self._find_relevant_chunks(query_text, chunks)

            query = EvaluationQuery(
                id=f"synthetic_{i}",
                question=query_text,
                reference_answer=None,  # Would need generation model
                relevant_chunk_ids=[chunk['id'] for chunk in relevant_chunks],
                query_type=query_type,
                difficulty=random.choice(['easy', 'medium', 'hard']),
                domain='synthetic'
            )

            queries.append(query)

        return queries

    def _extract_entities_from_chunks(self, chunks: List[Dict]) -> Dict[str, List[str]]:
        """Extract entities, concepts, and relationships from chunks"""
        # This would use proper NER in practice
        entities = {
            'concepts': [],
            'technologies': [],
            'methods': [],
            'metrics': [],
            'events': []
        }

        for chunk in chunks:
            content = chunk['content']
            # Simplified entity extraction
            words = content.split()
            entities['concepts'].extend([word for word in words if len(word) > 6])
            entities['technologies'].extend([word for word in words if 'technology' in word.lower()])
            entities['methods'].extend([word for word in words if 'method' in word.lower()])
            entities['metrics'].extend([word for word in words if '%' in word or '$' in word])

        # Remove duplicates and limit
        for key in entities:
            entities[key] = list(set(entities[key]))[:50]

        return entities

    def _fill_template(self, template: str, entities: Dict[str, List[str]]) -> str:
        """Fill query template with random entities"""
        import re

        def replace_placeholder(match):
            placeholder = match.group(1)

            # Map placeholders to entity types
            entity_mapping = {
                'concept': 'concepts',
                'concept1': 'concepts',
                'concept2': 'concepts',
                'technology': 'technologies',
                'method': 'methods',
                'method1': 'methods',
                'method2': 'methods',
                'metric': 'metrics',
                'event': 'events',
                'items': 'concepts',
                'option1': 'concepts',
                'option2': 'concepts',
                'approach': 'methods',
                'problem': 'concepts',
                'domain': 'concepts',
                'system1': 'concepts',
                'system2': 'concepts'
            }

            entity_type = entity_mapping.get(placeholder, 'concepts')
            available_entities = entities.get(entity_type, ['something'])

            if available_entities:
                return random.choice(available_entities)
            else:
                return 'something'

        return re.sub(r'\{(\w+)\}', replace_placeholder, template)

    def _find_relevant_chunks(self, query: str, chunks: List[Dict], k: int = 3) -> List[Dict]:
        """Find chunks most relevant to the query"""
        # Simple keyword matching for synthetic generation
        query_words = set(query.lower().split())

        chunk_scores = []
        for chunk in chunks:
            chunk_words = set(chunk['content'].lower().split())
            overlap = len(query_words & chunk_words)
            chunk_scores.append((overlap, chunk))

        # Sort by overlap and return top k
        chunk_scores.sort(key=lambda x: x[0], reverse=True)
        return [chunk for _, chunk in chunk_scores[:k]]

A/B Testing Framework

Statistical Significance Testing

import numpy as np
from scipy import stats
from typing import List, Dict, Tuple

class ABTestAnalyzer:
    def __init__(self):
        self.significance_level = 0.05

    def compare_metrics(self, control_metrics: List[float],
                       treatment_metrics: List[float],
                       metric_name: str) -> Dict:
        """
        Compare metrics between control and treatment groups
        """
        control_mean = np.mean(control_metrics)
        treatment_mean = np.mean(treatment_metrics)

        control_std = np.std(control_metrics)
        treatment_std = np.std(treatment_metrics)

        # Perform t-test
        t_statistic, p_value = stats.ttest_ind(control_metrics, treatment_metrics)

        # Calculate effect size (Cohen's d)
        pooled_std = np.sqrt(((len(control_metrics) - 1) * control_std**2 +
                             (len(treatment_metrics) - 1) * treatment_std**2) /
                            (len(control_metrics) + len(treatment_metrics) - 2))

        cohens_d = (treatment_mean - control_mean) / pooled_std if pooled_std > 0 else 0

        # Determine significance
        is_significant = p_value < self.significance_level

        return {
            'metric_name': metric_name,
            'control_mean': control_mean,
            'treatment_mean': treatment_mean,
            'absolute_difference': treatment_mean - control_mean,
            'relative_difference': ((treatment_mean - control_mean) / control_mean * 100) if control_mean != 0 else 0,
            'control_std': control_std,
            'treatment_std': treatment_std,
            't_statistic': t_statistic,
            'p_value': p_value,
            'is_significant': is_significant,
            'effect_size': cohens_d,
            'significance_level': self.significance_level
        }

    def analyze_ab_test_results(self,
                               control_results: Dict[str, List[float]],
                               treatment_results: Dict[str, List[float]]) -> Dict:
        """
        Analyze A/B test results across multiple metrics
        """
        analysis_results = {}

        # Ensure both dictionaries have the same keys
        all_metrics = set(control_results.keys()) & set(treatment_results.keys())

        for metric in all_metrics:
            if metric in control_results and metric in treatment_results:
                analysis_results[metric] = self.compare_metrics(
                    control_results[metric],
                    treatment_results[metric],
                    metric
                )

        # Calculate overall summary
        significant_improvements = sum(1 for result in analysis_results.values()
                                     if result['is_significant'] and result['relative_difference'] > 0)
        significant_degradations = sum(1 for result in analysis_results.values()
                                      if result['is_significant'] and result['relative_difference'] < 0)

        analysis_results['summary'] = {
            'total_metrics_compared': len(analysis_results),
            'significant_improvements': significant_improvements,
            'significant_degradations': significant_degradations,
            'no_significant_change': len(analysis_results) - significant_improvements - significant_degradations
        }

        return analysis_results

Automated Evaluation Pipeline

End-to-End Evaluation

class ChunkingEvaluationPipeline:
    def __init__(self, strategies: Dict[str, Any], dataset: EvaluationDataset):
        self.strategies = strategies
        self.dataset = dataset
        self.results = {}
        self.profiler = PerformanceProfiler()
        self.memory_profiler = MemoryProfiler()

    def run_evaluation(self) -> Dict:
        """Run comprehensive evaluation of all strategies"""
        evaluation_results = {}

        for strategy_name, strategy in self.strategies.items():
            print(f"Evaluating strategy: {strategy_name}")

            # Reset profilers for each strategy
            self.profiler = PerformanceProfiler()
            self.memory_profiler = MemoryProfiler()

            # Evaluate strategy
            strategy_results = self._evaluate_strategy(strategy, strategy_name)
            evaluation_results[strategy_name] = strategy_results

        # Compare strategies
        comparison_results = self._compare_strategies(evaluation_results)

        return {
            'individual_results': evaluation_results,
            'comparison': comparison_results,
            'recommendations': self._generate_recommendations(comparison_results)
        }

    def _evaluate_strategy(self, strategy: Any, strategy_name: str) -> Dict:
        """Evaluate a single chunking strategy"""
        results = {
            'strategy_name': strategy_name,
            'retrieval_metrics': {},
            'quality_metrics': {},
            'performance_metrics': {}
        }

        # Track memory usage
        self.memory_profiler.take_memory_snapshot(f"{strategy_name}_start")

        # Process all documents
        self.profiler.start_timer('total_processing')

        all_chunks = {}
        for doc_id, content in self.dataset.documents.items():
            self.profiler.start_timer('chunking')
            chunks = strategy.chunk(content)
            self.profiler.end_timer('chunking')

            all_chunks[doc_id] = chunks

        self.memory_profiler.take_memory_snapshot(f"{strategy_name}_after_chunking")

        # Generate embeddings for chunks
        self.profiler.start_timer('embedding')
        chunk_embeddings = self._generate_embeddings(all_chunks)
        self.profiler.end_timer('embedding')

        self.memory_profiler.take_memory_snapshot(f"{strategy_name}_after_embedding")

        # Evaluate retrieval performance
        retrieval_results = self._evaluate_retrieval(all_chunks, chunk_embeddings)
        results['retrieval_metrics'] = retrieval_results

        # Evaluate chunk quality
        quality_results = self._evaluate_chunk_quality(all_chunks)
        results['quality_metrics'] = quality_results

        # Get performance metrics
        self.profiler.end_timer('total_processing')
        performance_metrics = self.profiler.get_performance_metrics(len(self.dataset.documents))
        results['performance_metrics'] = performance_metrics.__dict__

        # Get memory metrics
        self.memory_profiler.take_memory_snapshot(f"{strategy_name}_end")
        results['memory_metrics'] = {
            'peak_memory_mb': self.memory_profiler.get_peak_memory_usage(),
            'memory_by_operation': self.memory_profiler.get_memory_usage_by_operation()
        }

        return results

    def _evaluate_retrieval(self, all_chunks: Dict, chunk_embeddings: Dict) -> Dict:
        """Evaluate retrieval performance"""
        retrieval_metrics = {
            'precision': [],
            'recall': [],
            'f1_score': [],
            'mrr': [],
            'map': []
        }

        for query in self.dataset.queries:
            # Perform retrieval
            self.profiler.start_timer('search')
            retrieved_chunks = self._retrieve_chunks(query.question, chunk_embeddings, k=10)
            self.profiler.end_timer('search')

            # Get relevant chunks for this query
            relevant_chunk_ids = set(query.relevant_chunk_ids)
            relevant_chunks = [chunk for chunk in retrieved_chunks
                             if chunk.get('id') in relevant_chunk_ids]

            # Calculate metrics
            precision = calculate_precision(retrieved_chunks, relevant_chunks)
            recall = calculate_recall(retrieved_chunks, relevant_chunks)
            f1 = calculate_f1_score(precision, recall)

            retrieval_metrics['precision'].append(precision)
            retrieval_metrics['recall'].append(recall)
            retrieval_metrics['f1_score'].append(f1)

        # Calculate averages
        return {metric: np.mean(values) for metric, values in retrieval_metrics.items()}

    def _evaluate_chunk_quality(self, all_chunks: Dict) -> Dict:
        """Evaluate quality of generated chunks"""
        quality_assessor = ChunkQualityAssessor()
        quality_scores = []

        for doc_id, chunks in all_chunks.items():
            # Analyze document
            content = self.dataset.documents[doc_id]
            analyzer = DocumentAnalyzer()
            analysis = analyzer.analyze(content)

            # Assess chunk quality
            scores = quality_assessor.assess_chunks(chunks, analysis)
            quality_scores.append(scores)

        # Aggregate quality scores
        if quality_scores:
            avg_scores = {}
            for metric in quality_scores[0].keys():
                avg_scores[metric] = np.mean([scores[metric] for scores in quality_scores])
            return avg_scores

        return {}

    def _compare_strategies(self, evaluation_results: Dict) -> Dict:
        """Compare performance across strategies"""
        ab_analyzer = ABTestAnalyzer()

        comparison = {}

        # Compare each metric across strategies
        strategy_names = list(evaluation_results.keys())

        for i in range(len(strategy_names)):
            for j in range(i + 1, len(strategy_names)):
                strategy1 = strategy_names[i]
                strategy2 = strategy_names[j]

                comparison_key = f"{strategy1}_vs_{strategy2}"
                comparison[comparison_key] = {}

                # Compare retrieval metrics
                for metric in ['precision', 'recall', 'f1_score']:
                    if (metric in evaluation_results[strategy1]['retrieval_metrics'] and
                        metric in evaluation_results[strategy2]['retrieval_metrics']):

                        comparison[comparison_key][f"retrieval_{metric}"] = ab_analyzer.compare_metrics(
                            [evaluation_results[strategy1]['retrieval_metrics'][metric]],
                            [evaluation_results[strategy2]['retrieval_metrics'][metric]],
                            f"retrieval_{metric}"
                        )

        return comparison

    def _generate_recommendations(self, comparison_results: Dict) -> Dict:
        """Generate recommendations based on evaluation results"""
        recommendations = {
            'best_overall': None,
            'best_for_precision': None,
            'best_for_recall': None,
            'best_for_performance': None,
            'trade_offs': []
        }

        # This would analyze the comparison results and generate specific recommendations
        # Implementation depends on specific use case requirements

        return recommendations

    def _generate_embeddings(self, all_chunks: Dict) -> Dict:
        """Generate embeddings for all chunks"""
        # This would use the actual embedding model
        # Placeholder implementation
        embeddings = {}

        for doc_id, chunks in all_chunks.items():
            embeddings[doc_id] = []
            for chunk in chunks:
                # Generate embedding for chunk content
                embedding = np.random.rand(384)  # Placeholder
                embeddings[doc_id].append({
                    'chunk': chunk,
                    'embedding': embedding
                })

        return embeddings

    def _retrieve_chunks(self, query: str, chunk_embeddings: Dict, k: int = 10) -> List[Dict]:
        """Retrieve most relevant chunks for a query"""
        # This would use actual similarity search
        # Placeholder implementation
        all_chunks = []

        for doc_embeddings in chunk_embeddings.values():
            for chunk_data in doc_embeddings:
                all_chunks.append(chunk_data['chunk'])

        # Simple random selection as placeholder
        selected = random.sample(all_chunks, min(k, len(all_chunks)))

        return selected

This comprehensive evaluation framework provides the tools needed to thoroughly assess chunking strategies across multiple dimensions: retrieval effectiveness, answer quality, system performance, and statistical significance. The modular design allows for easy extension and customization based on specific requirements and use cases.