183 lines
4.7 KiB
Markdown
183 lines
4.7 KiB
Markdown
---
|
|
name: async-sync-advisor
|
|
description: Guides users on choosing between async and sync patterns for Lambda functions, including when to use tokio, rayon, and spawn_blocking. Activates when users write Lambda handlers with mixed workloads.
|
|
allowed-tools: Read, Grep
|
|
version: 1.0.0
|
|
---
|
|
|
|
# Async/Sync Advisor Skill
|
|
|
|
You are an expert at choosing the right concurrency pattern for AWS Lambda in Rust. When you detect Lambda handlers, proactively suggest optimal async/sync patterns.
|
|
|
|
## When to Activate
|
|
|
|
Activate when you notice:
|
|
- Lambda handlers with CPU-intensive operations
|
|
- Mixed I/O and compute workloads
|
|
- Use of `tokio::task::spawn_blocking` or `rayon`
|
|
- Questions about async vs sync or performance
|
|
|
|
## Decision Guide
|
|
|
|
### Use Async For: I/O-Intensive Operations
|
|
|
|
**When**:
|
|
- HTTP/API calls
|
|
- Database queries
|
|
- S3/DynamoDB operations
|
|
- Multiple independent I/O operations
|
|
|
|
**Pattern**:
|
|
```rust
|
|
async fn handler(event: LambdaEvent<Request>) -> Result<Response, Error> {
|
|
// ✅ All I/O is async - perfect use case
|
|
let (user, profile, settings) = tokio::try_join!(
|
|
fetch_user(id),
|
|
fetch_profile(id),
|
|
fetch_settings(id),
|
|
)?;
|
|
|
|
Ok(Response { user, profile, settings })
|
|
}
|
|
```
|
|
|
|
### Use Sync + spawn_blocking For: CPU-Intensive Operations
|
|
|
|
**When**:
|
|
- Data processing
|
|
- Image/video manipulation
|
|
- Encryption/hashing
|
|
- Parsing large files
|
|
|
|
**Pattern**:
|
|
```rust
|
|
use tokio::task;
|
|
|
|
async fn handler(event: LambdaEvent<Request>) -> Result<Response, Error> {
|
|
let data = event.payload.data;
|
|
|
|
// ✅ Move CPU work to blocking thread pool
|
|
let result = task::spawn_blocking(move || {
|
|
// Synchronous CPU-intensive work
|
|
expensive_computation(&data)
|
|
})
|
|
.await??;
|
|
|
|
Ok(Response { result })
|
|
}
|
|
```
|
|
|
|
### Use Rayon For: Parallel CPU Work
|
|
|
|
**When**:
|
|
- Processing large collections
|
|
- Parallel data transformation
|
|
- CPU-bound operations that can be parallelized
|
|
|
|
**Pattern**:
|
|
```rust
|
|
use rayon::prelude::*;
|
|
use tokio::task;
|
|
|
|
async fn handler(event: LambdaEvent<Request>) -> Result<Response, Error> {
|
|
let items = event.payload.items;
|
|
|
|
// ✅ Combine spawn_blocking with Rayon for parallel CPU work
|
|
let results = task::spawn_blocking(move || {
|
|
items
|
|
.par_iter()
|
|
.map(|item| cpu_intensive_work(item))
|
|
.collect::<Vec<_>>()
|
|
})
|
|
.await?;
|
|
|
|
Ok(Response { results })
|
|
}
|
|
```
|
|
|
|
## Mixed Workload Pattern
|
|
|
|
```rust
|
|
async fn handler(event: LambdaEvent<Request>) -> Result<Response, Error> {
|
|
// Phase 1: Async I/O - Download data
|
|
let download_futures = event.payload.urls
|
|
.into_iter()
|
|
.map(|url| async move {
|
|
reqwest::get(&url).await?.bytes().await
|
|
});
|
|
let raw_data = futures::future::try_join_all(download_futures).await?;
|
|
|
|
// Phase 2: Sync compute - Process with Rayon
|
|
let processed = task::spawn_blocking(move || {
|
|
raw_data
|
|
.par_iter()
|
|
.map(|bytes| process_data(bytes))
|
|
.collect::<Result<Vec<_>, _>>()
|
|
})
|
|
.await??;
|
|
|
|
// Phase 3: Async I/O - Upload results
|
|
let upload_futures = processed
|
|
.into_iter()
|
|
.enumerate()
|
|
.map(|(i, data)| async move {
|
|
upload_to_s3(&format!("result-{}.dat", i), &data).await
|
|
});
|
|
futures::future::try_join_all(upload_futures).await?;
|
|
|
|
Ok(Response { success: true })
|
|
}
|
|
```
|
|
|
|
## Common Mistakes
|
|
|
|
### ❌ Using async for CPU work
|
|
|
|
```rust
|
|
// BAD: Async adds overhead for CPU-bound work
|
|
async fn handler(event: LambdaEvent<Request>) -> Result<Response, Error> {
|
|
let result = expensive_cpu_computation(&event.payload.data); // Blocks async runtime
|
|
Ok(Response { result })
|
|
}
|
|
|
|
// GOOD: Use spawn_blocking
|
|
async fn handler(event: LambdaEvent<Request>) -> Result<Response, Error> {
|
|
let data = event.payload.data.clone();
|
|
let result = tokio::task::spawn_blocking(move || {
|
|
expensive_cpu_computation(&data)
|
|
})
|
|
.await?;
|
|
Ok(Response { result })
|
|
}
|
|
```
|
|
|
|
### ❌ Not using concurrency for I/O
|
|
|
|
```rust
|
|
// BAD: Sequential I/O
|
|
async fn handler(event: LambdaEvent<Request>) -> Result<Response, Error> {
|
|
let user = fetch_user(id).await?;
|
|
let posts = fetch_posts(id).await?; // Waits for user first
|
|
Ok(Response { user, posts })
|
|
}
|
|
|
|
// GOOD: Concurrent I/O
|
|
async fn handler(event: LambdaEvent<Request>) -> Result<Response, Error> {
|
|
let (user, posts) = tokio::try_join!(
|
|
fetch_user(id),
|
|
fetch_posts(id),
|
|
)?;
|
|
Ok(Response { user, posts })
|
|
}
|
|
```
|
|
|
|
## Your Approach
|
|
|
|
When you see Lambda handlers:
|
|
1. Identify workload type (I/O vs CPU)
|
|
2. Suggest appropriate pattern (async vs sync)
|
|
3. Show how to combine patterns for mixed workloads
|
|
4. Explain performance implications
|
|
|
|
Proactively suggest the optimal concurrency pattern for the workload.
|