Files
2025-11-29 18:23:58 +08:00

48 lines
1.1 KiB
Markdown

---
model: claude-opus-4-1
---
# Machine Learning Pipeline
Design and implement a complete ML pipeline for: $ARGUMENTS
Create a production-ready pipeline including:
1. **Data Ingestion**:
- Multiple data source connectors
- Schema validation with Pydantic
- Data versioning strategy
- Incremental loading capabilities
2. **Feature Engineering**:
- Feature transformation pipeline
- Feature store integration
- Statistical validation
- Handling missing data and outliers
3. **Model Training**:
- Experiment tracking (MLflow/W&B)
- Hyperparameter optimization
- Cross-validation strategy
- Model versioning
4. **Model Evaluation**:
- Comprehensive metrics
- A/B testing framework
- Bias detection
- Performance monitoring
5. **Deployment**:
- Model serving API
- Batch/stream prediction
- Model registry
- Rollback capabilities
6. **Monitoring**:
- Data drift detection
- Model performance tracking
- Alert system
- Retraining triggers
Include error handling, logging, and make it cloud-agnostic. Use modern tools like DVC, MLflow, or similar. Ensure reproducibility and scalability.