Files
2025-11-29 18:23:58 +08:00

1.1 KiB

model
model
claude-opus-4-1

Machine Learning Pipeline

Design and implement a complete ML pipeline for: $ARGUMENTS

Create a production-ready pipeline including:

  1. Data Ingestion:

    • Multiple data source connectors
    • Schema validation with Pydantic
    • Data versioning strategy
    • Incremental loading capabilities
  2. Feature Engineering:

    • Feature transformation pipeline
    • Feature store integration
    • Statistical validation
    • Handling missing data and outliers
  3. Model Training:

    • Experiment tracking (MLflow/W&B)
    • Hyperparameter optimization
    • Cross-validation strategy
    • Model versioning
  4. Model Evaluation:

    • Comprehensive metrics
    • A/B testing framework
    • Bias detection
    • Performance monitoring
  5. Deployment:

    • Model serving API
    • Batch/stream prediction
    • Model registry
    • Rollback capabilities
  6. Monitoring:

    • Data drift detection
    • Model performance tracking
    • Alert system
    • Retraining triggers

Include error handling, logging, and make it cloud-agnostic. Use modern tools like DVC, MLflow, or similar. Ensure reproducibility and scalability.