975 lines
18 KiB
Markdown
975 lines
18 KiB
Markdown
# Standard Library Reference - Python Code Node
|
|
|
|
Complete guide to available Python standard library modules in n8n Code nodes.
|
|
|
|
---
|
|
|
|
## ⚠️ Critical Limitation
|
|
|
|
**NO EXTERNAL LIBRARIES AVAILABLE**
|
|
|
|
Python Code nodes in n8n have **ONLY** the Python standard library. No pip packages.
|
|
|
|
```python
|
|
# ❌ NOT AVAILABLE - Will cause ModuleNotFoundError
|
|
import requests # No HTTP library!
|
|
import pandas # No data analysis!
|
|
import numpy # No numerical computing!
|
|
import bs4 # No web scraping!
|
|
import selenium # No browser automation!
|
|
import psycopg2 # No database drivers!
|
|
import pymongo # No MongoDB!
|
|
import sqlalchemy # No ORMs!
|
|
|
|
# ✅ AVAILABLE - Standard library only
|
|
import json
|
|
import datetime
|
|
import re
|
|
import base64
|
|
import hashlib
|
|
import urllib.parse
|
|
import urllib.request
|
|
import math
|
|
import random
|
|
import statistics
|
|
```
|
|
|
|
**Recommendation**: Use **JavaScript** for 95% of use cases. JavaScript has more capabilities in n8n.
|
|
|
|
---
|
|
|
|
## Available Modules
|
|
|
|
### Priority 1: Most Useful (Use These)
|
|
|
|
1. **json** - JSON parsing and generation
|
|
2. **datetime** - Date and time operations
|
|
3. **re** - Regular expressions
|
|
4. **base64** - Base64 encoding/decoding
|
|
5. **hashlib** - Hashing (MD5, SHA256, etc.)
|
|
6. **urllib.parse** - URL parsing and encoding
|
|
|
|
### Priority 2: Moderately Useful
|
|
|
|
7. **math** - Mathematical functions
|
|
8. **random** - Random number generation
|
|
9. **statistics** - Statistical functions
|
|
10. **collections** - Specialized data structures
|
|
|
|
### Priority 3: Occasionally Useful
|
|
|
|
11. **itertools** - Iterator tools
|
|
12. **functools** - Higher-order functions
|
|
13. **operator** - Standard operators as functions
|
|
14. **string** - String constants and templates
|
|
15. **textwrap** - Text wrapping utilities
|
|
|
|
---
|
|
|
|
## Module 1: json - JSON Operations
|
|
|
|
**Most common module** - Parse and generate JSON data.
|
|
|
|
### Parse JSON String
|
|
|
|
```python
|
|
import json
|
|
|
|
# Parse JSON string to Python dict
|
|
json_string = '{"name": "Alice", "age": 30}'
|
|
data = json.loads(json_string)
|
|
|
|
return [{
|
|
"json": {
|
|
"name": data["name"],
|
|
"age": data["age"],
|
|
"parsed": True
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Generate JSON String
|
|
|
|
```python
|
|
import json
|
|
|
|
# Convert Python dict to JSON string
|
|
data = {
|
|
"users": [
|
|
{"id": 1, "name": "Alice"},
|
|
{"id": 2, "name": "Bob"}
|
|
],
|
|
"total": 2
|
|
}
|
|
|
|
json_string = json.dumps(data, indent=2)
|
|
|
|
return [{
|
|
"json": {
|
|
"json_output": json_string,
|
|
"length": len(json_string)
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Handle JSON Errors
|
|
|
|
```python
|
|
import json
|
|
|
|
webhook_data = _input.first()["json"]["body"]
|
|
json_string = webhook_data.get("data", "")
|
|
|
|
try:
|
|
parsed = json.loads(json_string)
|
|
status = "valid"
|
|
error = None
|
|
except json.JSONDecodeError as e:
|
|
parsed = None
|
|
status = "invalid"
|
|
error = str(e)
|
|
|
|
return [{
|
|
"json": {
|
|
"status": status,
|
|
"data": parsed,
|
|
"error": error
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Pretty Print JSON
|
|
|
|
```python
|
|
import json
|
|
|
|
# Format JSON with indentation
|
|
data = _input.first()["json"]
|
|
|
|
pretty_json = json.dumps(data, indent=2, sort_keys=True)
|
|
|
|
return [{
|
|
"json": {
|
|
"formatted": pretty_json
|
|
}
|
|
}]
|
|
```
|
|
|
|
---
|
|
|
|
## Module 2: datetime - Date and Time
|
|
|
|
**Very common** - Date parsing, formatting, calculations.
|
|
|
|
### Current Date and Time
|
|
|
|
```python
|
|
from datetime import datetime
|
|
|
|
now = datetime.now()
|
|
|
|
return [{
|
|
"json": {
|
|
"timestamp": now.isoformat(),
|
|
"date": now.strftime("%Y-%m-%d"),
|
|
"time": now.strftime("%H:%M:%S"),
|
|
"formatted": now.strftime("%B %d, %Y at %I:%M %p")
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Parse Date String
|
|
|
|
```python
|
|
from datetime import datetime
|
|
|
|
date_string = "2025-01-15T14:30:00"
|
|
dt = datetime.fromisoformat(date_string)
|
|
|
|
return [{
|
|
"json": {
|
|
"year": dt.year,
|
|
"month": dt.month,
|
|
"day": dt.day,
|
|
"hour": dt.hour,
|
|
"weekday": dt.strftime("%A")
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Date Calculations
|
|
|
|
```python
|
|
from datetime import datetime, timedelta
|
|
|
|
now = datetime.now()
|
|
|
|
# Calculate future/past dates
|
|
tomorrow = now + timedelta(days=1)
|
|
yesterday = now - timedelta(days=1)
|
|
next_week = now + timedelta(weeks=1)
|
|
one_hour_ago = now - timedelta(hours=1)
|
|
|
|
return [{
|
|
"json": {
|
|
"now": now.isoformat(),
|
|
"tomorrow": tomorrow.isoformat(),
|
|
"yesterday": yesterday.isoformat(),
|
|
"next_week": next_week.isoformat(),
|
|
"one_hour_ago": one_hour_ago.isoformat()
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Compare Dates
|
|
|
|
```python
|
|
from datetime import datetime
|
|
|
|
date1 = datetime(2025, 1, 15)
|
|
date2 = datetime(2025, 1, 20)
|
|
|
|
# Calculate difference
|
|
diff = date2 - date1
|
|
|
|
return [{
|
|
"json": {
|
|
"days_difference": diff.days,
|
|
"seconds_difference": diff.total_seconds(),
|
|
"date1_is_earlier": date1 < date2,
|
|
"date2_is_later": date2 > date1
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Format Dates
|
|
|
|
```python
|
|
from datetime import datetime
|
|
|
|
dt = datetime.now()
|
|
|
|
return [{
|
|
"json": {
|
|
"iso": dt.isoformat(),
|
|
"us_format": dt.strftime("%m/%d/%Y"),
|
|
"eu_format": dt.strftime("%d/%m/%Y"),
|
|
"long_format": dt.strftime("%A, %B %d, %Y"),
|
|
"time_12h": dt.strftime("%I:%M %p"),
|
|
"time_24h": dt.strftime("%H:%M:%S")
|
|
}
|
|
}]
|
|
```
|
|
|
|
---
|
|
|
|
## Module 3: re - Regular Expressions
|
|
|
|
**Common** - Pattern matching, text extraction, validation.
|
|
|
|
### Pattern Matching
|
|
|
|
```python
|
|
import re
|
|
|
|
text = "Email: alice@example.com, Phone: 555-1234"
|
|
|
|
# Find email
|
|
email_match = re.search(r'\b[\w.-]+@[\w.-]+\.\w+\b', text)
|
|
email = email_match.group(0) if email_match else None
|
|
|
|
# Find phone
|
|
phone_match = re.search(r'\d{3}-\d{4}', text)
|
|
phone = phone_match.group(0) if phone_match else None
|
|
|
|
return [{
|
|
"json": {
|
|
"email": email,
|
|
"phone": phone
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Extract All Matches
|
|
|
|
```python
|
|
import re
|
|
|
|
text = "Tags: #python #automation #workflow #n8n"
|
|
|
|
# Find all hashtags
|
|
hashtags = re.findall(r'#(\w+)', text)
|
|
|
|
return [{
|
|
"json": {
|
|
"tags": hashtags,
|
|
"count": len(hashtags)
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Replace Patterns
|
|
|
|
```python
|
|
import re
|
|
|
|
text = "Price: $99.99, Discount: $10.00"
|
|
|
|
# Remove dollar signs
|
|
cleaned = re.sub(r'\$', '', text)
|
|
|
|
# Replace multiple spaces with single space
|
|
normalized = re.sub(r'\s+', ' ', cleaned)
|
|
|
|
return [{
|
|
"json": {
|
|
"original": text,
|
|
"cleaned": cleaned,
|
|
"normalized": normalized
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Validate Format
|
|
|
|
```python
|
|
import re
|
|
|
|
email = _input.first()["json"]["body"].get("email", "")
|
|
|
|
# Email validation pattern
|
|
email_pattern = r'^[\w.-]+@[\w.-]+\.\w+$'
|
|
is_valid = bool(re.match(email_pattern, email))
|
|
|
|
return [{
|
|
"json": {
|
|
"email": email,
|
|
"valid": is_valid
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Split on Pattern
|
|
|
|
```python
|
|
import re
|
|
|
|
text = "apple,banana;orange|grape"
|
|
|
|
# Split on multiple delimiters
|
|
items = re.split(r'[,;|]', text)
|
|
|
|
# Clean up whitespace
|
|
items = [item.strip() for item in items]
|
|
|
|
return [{
|
|
"json": {
|
|
"items": items,
|
|
"count": len(items)
|
|
}
|
|
}]
|
|
```
|
|
|
|
---
|
|
|
|
## Module 4: base64 - Encoding/Decoding
|
|
|
|
**Common** - Encode binary data, API authentication.
|
|
|
|
### Encode String to Base64
|
|
|
|
```python
|
|
import base64
|
|
|
|
text = "Hello, World!"
|
|
|
|
# Encode to base64
|
|
encoded_bytes = base64.b64encode(text.encode('utf-8'))
|
|
encoded_string = encoded_bytes.decode('utf-8')
|
|
|
|
return [{
|
|
"json": {
|
|
"original": text,
|
|
"encoded": encoded_string
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Decode Base64 to String
|
|
|
|
```python
|
|
import base64
|
|
|
|
encoded = "SGVsbG8sIFdvcmxkIQ=="
|
|
|
|
# Decode from base64
|
|
decoded_bytes = base64.b64decode(encoded)
|
|
decoded_string = decoded_bytes.decode('utf-8')
|
|
|
|
return [{
|
|
"json": {
|
|
"encoded": encoded,
|
|
"decoded": decoded_string
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Basic Auth Header
|
|
|
|
```python
|
|
import base64
|
|
|
|
username = "admin"
|
|
password = "secret123"
|
|
|
|
# Create Basic Auth header
|
|
credentials = f"{username}:{password}"
|
|
encoded = base64.b64encode(credentials.encode('utf-8')).decode('utf-8')
|
|
auth_header = f"Basic {encoded}"
|
|
|
|
return [{
|
|
"json": {
|
|
"authorization": auth_header
|
|
}
|
|
}]
|
|
```
|
|
|
|
---
|
|
|
|
## Module 5: hashlib - Hashing
|
|
|
|
**Common** - Generate checksums, hash passwords, create IDs.
|
|
|
|
### MD5 Hash
|
|
|
|
```python
|
|
import hashlib
|
|
|
|
text = "Hello, World!"
|
|
|
|
# Generate MD5 hash
|
|
md5_hash = hashlib.md5(text.encode('utf-8')).hexdigest()
|
|
|
|
return [{
|
|
"json": {
|
|
"original": text,
|
|
"md5": md5_hash
|
|
}
|
|
}]
|
|
```
|
|
|
|
### SHA256 Hash
|
|
|
|
```python
|
|
import hashlib
|
|
|
|
data = _input.first()["json"]["body"]
|
|
text = data.get("password", "")
|
|
|
|
# Generate SHA256 hash (more secure than MD5)
|
|
sha256_hash = hashlib.sha256(text.encode('utf-8')).hexdigest()
|
|
|
|
return [{
|
|
"json": {
|
|
"hashed": sha256_hash
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Generate Unique ID
|
|
|
|
```python
|
|
import hashlib
|
|
from datetime import datetime
|
|
|
|
# Create unique ID from multiple values
|
|
unique_string = f"{datetime.now().isoformat()}-{_json.get('user_id', 'unknown')}"
|
|
unique_id = hashlib.sha256(unique_string.encode('utf-8')).hexdigest()[:16]
|
|
|
|
return [{
|
|
"json": {
|
|
"id": unique_id,
|
|
"generated_at": datetime.now().isoformat()
|
|
}
|
|
}]
|
|
```
|
|
|
|
---
|
|
|
|
## Module 6: urllib.parse - URL Operations
|
|
|
|
**Common** - Parse URLs, encode parameters.
|
|
|
|
### Parse URL
|
|
|
|
```python
|
|
from urllib.parse import urlparse
|
|
|
|
url = "https://example.com/path?key=value&foo=bar#section"
|
|
|
|
parsed = urlparse(url)
|
|
|
|
return [{
|
|
"json": {
|
|
"scheme": parsed.scheme, # "https"
|
|
"netloc": parsed.netloc, # "example.com"
|
|
"path": parsed.path, # "/path"
|
|
"query": parsed.query, # "key=value&foo=bar"
|
|
"fragment": parsed.fragment # "section"
|
|
}
|
|
}]
|
|
```
|
|
|
|
### URL Encode Parameters
|
|
|
|
```python
|
|
from urllib.parse import urlencode
|
|
|
|
params = {
|
|
"name": "Alice Smith",
|
|
"email": "alice@example.com",
|
|
"message": "Hello, World!"
|
|
}
|
|
|
|
# Encode parameters for URL
|
|
encoded = urlencode(params)
|
|
|
|
return [{
|
|
"json": {
|
|
"query_string": encoded,
|
|
"full_url": f"https://api.example.com/submit?{encoded}"
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Parse Query String
|
|
|
|
```python
|
|
from urllib.parse import parse_qs
|
|
|
|
query_string = "name=Alice&age=30&tags=python&tags=n8n"
|
|
|
|
# Parse query string
|
|
params = parse_qs(query_string)
|
|
|
|
return [{
|
|
"json": {
|
|
"name": params.get("name", [""])[0],
|
|
"age": int(params.get("age", ["0"])[0]),
|
|
"tags": params.get("tags", [])
|
|
}
|
|
}]
|
|
```
|
|
|
|
### URL Encode/Decode Strings
|
|
|
|
```python
|
|
from urllib.parse import quote, unquote
|
|
|
|
text = "Hello, World! 你好"
|
|
|
|
# URL encode
|
|
encoded = quote(text)
|
|
|
|
# URL decode
|
|
decoded = unquote(encoded)
|
|
|
|
return [{
|
|
"json": {
|
|
"original": text,
|
|
"encoded": encoded,
|
|
"decoded": decoded
|
|
}
|
|
}]
|
|
```
|
|
|
|
---
|
|
|
|
## Module 7: math - Mathematical Operations
|
|
|
|
**Moderately useful** - Advanced math functions.
|
|
|
|
### Basic Math Functions
|
|
|
|
```python
|
|
import math
|
|
|
|
number = 16.7
|
|
|
|
return [{
|
|
"json": {
|
|
"ceiling": math.ceil(number), # 17
|
|
"floor": math.floor(number), # 16
|
|
"rounded": round(number), # 17
|
|
"square_root": math.sqrt(16), # 4.0
|
|
"power": math.pow(2, 3), # 8.0
|
|
"absolute": math.fabs(-5.5) # 5.5
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Trigonometry
|
|
|
|
```python
|
|
import math
|
|
|
|
angle_degrees = 45
|
|
angle_radians = math.radians(angle_degrees)
|
|
|
|
return [{
|
|
"json": {
|
|
"sine": math.sin(angle_radians),
|
|
"cosine": math.cos(angle_radians),
|
|
"tangent": math.tan(angle_radians),
|
|
"pi": math.pi,
|
|
"e": math.e
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Logarithms
|
|
|
|
```python
|
|
import math
|
|
|
|
number = 100
|
|
|
|
return [{
|
|
"json": {
|
|
"log10": math.log10(number), # 2.0
|
|
"natural_log": math.log(number), # 4.605...
|
|
"log2": math.log2(number) # 6.644...
|
|
}
|
|
}]
|
|
```
|
|
|
|
---
|
|
|
|
## Module 8: random - Random Numbers
|
|
|
|
**Moderately useful** - Generate random data, sampling.
|
|
|
|
### Random Numbers
|
|
|
|
```python
|
|
import random
|
|
|
|
return [{
|
|
"json": {
|
|
"random_float": random.random(), # 0.0 to 1.0
|
|
"random_int": random.randint(1, 100), # 1 to 100
|
|
"random_range": random.randrange(0, 100, 5) # 0, 5, 10, ..., 95
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Random Choice
|
|
|
|
```python
|
|
import random
|
|
|
|
colors = ["red", "green", "blue", "yellow"]
|
|
users = [{"id": 1, "name": "Alice"}, {"id": 2, "name": "Bob"}]
|
|
|
|
return [{
|
|
"json": {
|
|
"random_color": random.choice(colors),
|
|
"random_user": random.choice(users)
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Shuffle List
|
|
|
|
```python
|
|
import random
|
|
|
|
items = [1, 2, 3, 4, 5]
|
|
shuffled = items.copy()
|
|
random.shuffle(shuffled)
|
|
|
|
return [{
|
|
"json": {
|
|
"original": items,
|
|
"shuffled": shuffled
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Random Sample
|
|
|
|
```python
|
|
import random
|
|
|
|
items = list(range(1, 101))
|
|
|
|
# Get 10 random items without replacement
|
|
sample = random.sample(items, 10)
|
|
|
|
return [{
|
|
"json": {
|
|
"sample": sample,
|
|
"count": len(sample)
|
|
}
|
|
}]
|
|
```
|
|
|
|
---
|
|
|
|
## Module 9: statistics - Statistical Functions
|
|
|
|
**Moderately useful** - Calculate stats from data.
|
|
|
|
### Basic Statistics
|
|
|
|
```python
|
|
import statistics
|
|
|
|
numbers = [10, 20, 30, 40, 50, 60, 70, 80, 90, 100]
|
|
|
|
return [{
|
|
"json": {
|
|
"mean": statistics.mean(numbers), # 55.0
|
|
"median": statistics.median(numbers), # 55.0
|
|
"mode": statistics.mode([1, 2, 2, 3]), # 2
|
|
"stdev": statistics.stdev(numbers), # 30.28...
|
|
"variance": statistics.variance(numbers) # 916.67...
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Aggregate from Items
|
|
|
|
```python
|
|
import statistics
|
|
|
|
all_items = _input.all()
|
|
|
|
# Extract amounts
|
|
amounts = [item["json"].get("amount", 0) for item in all_items]
|
|
|
|
if amounts:
|
|
return [{
|
|
"json": {
|
|
"count": len(amounts),
|
|
"total": sum(amounts),
|
|
"average": statistics.mean(amounts),
|
|
"median": statistics.median(amounts),
|
|
"min": min(amounts),
|
|
"max": max(amounts),
|
|
"range": max(amounts) - min(amounts)
|
|
}
|
|
}]
|
|
else:
|
|
return [{"json": {"error": "No data"}}]
|
|
```
|
|
|
|
---
|
|
|
|
## Workarounds for Missing Libraries
|
|
|
|
### HTTP Requests (No requests library)
|
|
|
|
```python
|
|
# ❌ Can't use requests library
|
|
# import requests # ModuleNotFoundError!
|
|
|
|
# ✅ Use HTTP Request node instead
|
|
# Add HTTP Request node BEFORE Code node
|
|
# Access the response in Code node
|
|
|
|
response_data = _input.first()["json"]
|
|
|
|
return [{
|
|
"json": {
|
|
"status": response_data.get("status"),
|
|
"data": response_data.get("body"),
|
|
"processed": True
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Data Processing (No pandas)
|
|
|
|
```python
|
|
# ❌ Can't use pandas
|
|
# import pandas as pd # ModuleNotFoundError!
|
|
|
|
# ✅ Use Python's built-in list comprehensions
|
|
all_items = _input.all()
|
|
|
|
# Filter
|
|
active_items = [
|
|
item for item in all_items
|
|
if item["json"].get("status") == "active"
|
|
]
|
|
|
|
# Group by
|
|
from collections import defaultdict
|
|
grouped = defaultdict(list)
|
|
|
|
for item in all_items:
|
|
category = item["json"].get("category", "other")
|
|
grouped[category].append(item["json"])
|
|
|
|
# Aggregate
|
|
import statistics
|
|
amounts = [item["json"].get("amount", 0) for item in all_items]
|
|
total = sum(amounts)
|
|
average = statistics.mean(amounts) if amounts else 0
|
|
|
|
return [{
|
|
"json": {
|
|
"active_count": len(active_items),
|
|
"grouped": dict(grouped),
|
|
"total": total,
|
|
"average": average
|
|
}
|
|
}]
|
|
```
|
|
|
|
### Database Operations (No drivers)
|
|
|
|
```python
|
|
# ❌ Can't use database drivers
|
|
# import psycopg2 # ModuleNotFoundError!
|
|
# import pymongo # ModuleNotFoundError!
|
|
|
|
# ✅ Use n8n database nodes instead
|
|
# Add Postgres/MySQL/MongoDB node BEFORE Code node
|
|
# Process results in Code node
|
|
|
|
db_results = _input.first()["json"]
|
|
|
|
return [{
|
|
"json": {
|
|
"record_count": len(db_results) if isinstance(db_results, list) else 1,
|
|
"processed": True
|
|
}
|
|
}]
|
|
```
|
|
|
|
---
|
|
|
|
## Complete Standard Library List
|
|
|
|
**Available** (commonly useful):
|
|
- json
|
|
- datetime, time
|
|
- re
|
|
- base64
|
|
- hashlib
|
|
- urllib.parse, urllib.request, urllib.error
|
|
- math
|
|
- random
|
|
- statistics
|
|
- collections (defaultdict, Counter, namedtuple)
|
|
- itertools
|
|
- functools
|
|
- operator
|
|
- string
|
|
- textwrap
|
|
|
|
**Available** (less common):
|
|
- os.path (path operations only)
|
|
- copy
|
|
- typing
|
|
- enum
|
|
- decimal
|
|
- fractions
|
|
|
|
**NOT Available** (external libraries):
|
|
- requests (HTTP)
|
|
- pandas (data analysis)
|
|
- numpy (numerical computing)
|
|
- bs4/beautifulsoup4 (HTML parsing)
|
|
- selenium (browser automation)
|
|
- psycopg2, pymongo, sqlalchemy (databases)
|
|
- flask, fastapi (web frameworks)
|
|
- pillow (image processing)
|
|
- openpyxl, xlsxwriter (Excel)
|
|
|
|
---
|
|
|
|
## Best Practices
|
|
|
|
### 1. Use Standard Library When Possible
|
|
|
|
```python
|
|
# ✅ GOOD: Use standard library
|
|
import json
|
|
import datetime
|
|
import re
|
|
|
|
data = _input.first()["json"]
|
|
processed = json.loads(data.get("json_string", "{}"))
|
|
|
|
return [{"json": processed}]
|
|
```
|
|
|
|
### 2. Fall Back to n8n Nodes
|
|
|
|
```python
|
|
# For operations requiring external libraries,
|
|
# use n8n nodes instead:
|
|
# - HTTP Request for API calls
|
|
# - Postgres/MySQL for databases
|
|
# - Extract from File for parsing
|
|
|
|
# Then process results in Code node
|
|
result = _input.first()["json"]
|
|
return [{"json": {"processed": result}}]
|
|
```
|
|
|
|
### 3. Combine Multiple Modules
|
|
|
|
```python
|
|
import json
|
|
import base64
|
|
import hashlib
|
|
from datetime import datetime
|
|
|
|
# Combine modules for complex operations
|
|
data = _input.first()["json"]["body"]
|
|
|
|
# Hash sensitive data
|
|
user_id = hashlib.sha256(data.get("email", "").encode()).hexdigest()[:16]
|
|
|
|
# Encode for storage
|
|
encoded_data = base64.b64encode(json.dumps(data).encode()).decode()
|
|
|
|
return [{
|
|
"json": {
|
|
"user_id": user_id,
|
|
"encoded_data": encoded_data,
|
|
"timestamp": datetime.now().isoformat()
|
|
}
|
|
}]
|
|
```
|
|
|
|
---
|
|
|
|
## Summary
|
|
|
|
**Most Useful Modules**:
|
|
1. json - Parse/generate JSON
|
|
2. datetime - Date operations
|
|
3. re - Regular expressions
|
|
4. base64 - Encoding
|
|
5. hashlib - Hashing
|
|
6. urllib.parse - URL operations
|
|
|
|
**Critical Limitation**:
|
|
- NO external libraries (requests, pandas, numpy, etc.)
|
|
|
|
**Recommended Approach**:
|
|
- Use **JavaScript** for 95% of use cases
|
|
- Use Python only when specifically needed
|
|
- Use n8n nodes for operations requiring external libraries
|
|
|
|
**See Also**:
|
|
- [SKILL.md](SKILL.md) - Python Code overview
|
|
- [DATA_ACCESS.md](DATA_ACCESS.md) - Data access patterns
|
|
- [COMMON_PATTERNS.md](COMMON_PATTERNS.md) - Production patterns
|
|
- [ERROR_PATTERNS.md](ERROR_PATTERNS.md) - Avoid common mistakes
|