2.5 KiB
2.5 KiB
description, argument-hint
| description | argument-hint |
|---|---|
| Store agent-generated content for long-term memory | <file|-for-stdin> --collection <name> [options] |
Store agent-generated content (research, analysis, synthesized information) with rich metadata. Content is persisted to disk for re-indexing and full-text retrieval, then indexed to Qdrant for semantic search.
Storage Location: ~/.arcaneum/agent-memory/{collection}/
Options:
- --collection: Target collection (required)
- --model: Embedding model (default: stella for documents)
- --title: Document title (added to frontmatter)
- --category: Document category (e.g., research, security, analysis)
- --tags: Comma-separated tags
- --metadata: Additional metadata as JSON
- --chunk-size: Target chunk size in tokens (overrides model default)
- --chunk-overlap: Overlap between chunks in tokens
- --verbose: Show detailed progress
- --json: Output in JSON format
Examples:
/store analysis.md --collection Memory --title "Security Analysis" --category security
/store - --collection Research --title "Findings" --tags "research,important"
Execution:
cd ${CLAUDE_PLUGIN_ROOT}
arc store $ARGUMENTS
How It Works:
- Accept content from file or stdin (
-) - Extract/add rich metadata (title, category, tags, custom fields)
- Semantic chunking preserving document structure
- Generate embeddings (stella default: 1024D for documents)
- Upload to Qdrant with metadata
- Persist to disk:
~/.arcaneum/agent-memory/{collection}/{date}_{agent}_{slug}.md - Generate YAML frontmatter with injection metadata (injection_id, injected_at, injected_by)
Persistence:
Content is always persisted for durability. This enables:
- Re-indexing: Update embeddings without losing original content
- Full-text retrieval: Access complete original documents
- Audit trail: Track what was stored and when (injection_id, timestamps)
Filename Format:
YYYYMMDD_agent_slug.md (e.g., 20251030_claude_security-analysis.md)
Use Cases:
- AI agents storing research findings
- Preserving analysis results
- Collecting synthesized information
- Building knowledge bases from agent workflows
Default Model:
- stella (1024D, document-optimized)
Related Commands:
- /collection create - Create collection before storing (use --type markdown)
- /search semantic - Search stored content
- /index markdown - For indexing existing markdown directories (different use case)
Implementation:
- RDR-014: Markdown content indexing
- arcaneum-204: Direct injection persistence module