Files
gh-cwensel-arcaneum/commands/store.md
2025-11-29 18:17:12 +08:00

2.5 KiB

description, argument-hint
description argument-hint
Store agent-generated content for long-term memory <file|-for-stdin> --collection <name> [options]

Store agent-generated content (research, analysis, synthesized information) with rich metadata. Content is persisted to disk for re-indexing and full-text retrieval, then indexed to Qdrant for semantic search.

Storage Location: ~/.arcaneum/agent-memory/{collection}/

Options:

  • --collection: Target collection (required)
  • --model: Embedding model (default: stella for documents)
  • --title: Document title (added to frontmatter)
  • --category: Document category (e.g., research, security, analysis)
  • --tags: Comma-separated tags
  • --metadata: Additional metadata as JSON
  • --chunk-size: Target chunk size in tokens (overrides model default)
  • --chunk-overlap: Overlap between chunks in tokens
  • --verbose: Show detailed progress
  • --json: Output in JSON format

Examples:

/store analysis.md --collection Memory --title "Security Analysis" --category security
/store - --collection Research --title "Findings" --tags "research,important"

Execution:

cd ${CLAUDE_PLUGIN_ROOT}
arc store $ARGUMENTS

How It Works:

  1. Accept content from file or stdin (-)
  2. Extract/add rich metadata (title, category, tags, custom fields)
  3. Semantic chunking preserving document structure
  4. Generate embeddings (stella default: 1024D for documents)
  5. Upload to Qdrant with metadata
  6. Persist to disk: ~/.arcaneum/agent-memory/{collection}/{date}_{agent}_{slug}.md
  7. Generate YAML frontmatter with injection metadata (injection_id, injected_at, injected_by)

Persistence:

Content is always persisted for durability. This enables:

  • Re-indexing: Update embeddings without losing original content
  • Full-text retrieval: Access complete original documents
  • Audit trail: Track what was stored and when (injection_id, timestamps)

Filename Format:

YYYYMMDD_agent_slug.md (e.g., 20251030_claude_security-analysis.md)

Use Cases:

  • AI agents storing research findings
  • Preserving analysis results
  • Collecting synthesized information
  • Building knowledge bases from agent workflows

Default Model:

  • stella (1024D, document-optimized)

Related Commands:

  • /collection create - Create collection before storing (use --type markdown)
  • /search semantic - Search stored content
  • /index markdown - For indexing existing markdown directories (different use case)

Implementation:

  • RDR-014: Markdown content indexing
  • arcaneum-204: Direct injection persistence module