2.3 KiB
2.3 KiB
description, argument-hint
| description | argument-hint |
|---|---|
| Manage embedding models | <list> [options] |
Manage and view available embedding models for vector search.
Subcommands:
- list: List all available embedding models with details
Options:
- --json: Output in JSON format
Examples:
/models list
/models list --json
Execution:
cd ${CLAUDE_PLUGIN_ROOT}
arc models $ARGUMENTS
Available Models:
The list command shows:
- Model name (for --model flags)
- Dimensions (vector size)
- Backend (fastembed, sentence-transformers)
- Best use case (PDFs, code, general)
- Model ID (HuggingFace identifier)
Current Models:
For Documents/PDFs:
- stella (1024D): Best for documents, PDFs, general text
- bge-large (1024D): General purpose, high quality
- modernbert (1024D): Newer general-purpose model
For Source Code:
- jina-code (768D): Optimized for code, cross-language
- jina-v2-code (768D): Alternative code model
For General Use:
- bge (1024D): High-quality general embeddings
- bge-small (384D): Faster, smaller, lower quality
Model Selection Tips:
-
Match content type:
- PDFs/docs → stella or modernbert
- Source code → jina-code
- Mixed → stella or bge
-
Consider dimensions:
- Higher dimensions (1024D) = better quality, more storage
- Lower dimensions (384D, 768D) = faster, less storage
-
Backend matters:
- fastembed: Faster, optimized, limited models
- sentence-transformers: More models, HuggingFace ecosystem
-
Collection consistency:
- Use same model for all documents in a collection
- Cannot mix dimensions in one vector space
Downloading Models:
Models auto-download on first use (~1-2GB):
- Cached in ~/.arcaneum/models/
- Reused across indexing operations
- Use --offline flag to require cached models
Pre-download for offline use:
python -c "from sentence_transformers import SentenceTransformer; SentenceTransformer('jinaai/jina-embeddings-v2-base-code')"
Related Commands:
- /collection create - Create collection with specific model
- /index pdf - Index with model selection
- /index code - Index with model selection
Implementation:
- RDR-002: Embedding client architecture
- RDR-006: Model listing CLI
- arcaneum-142: Multi-backend support