13 KiB
Meta-Automation Architect - System Overview
A comprehensive skill that analyzes projects and generates tailored automation systems with parallel subagents, custom skills, commands, and hooks.
Quick Links
- README.md - Main usage guide
- SKILL.md - Full skill definition
- Communication Protocol - Agent Communication Protocol (ACP) specification
- Examples - Complete examples for different project types
- Templates - Templates for generated artifacts
Directory Structure
.claude/skills/meta-automation-architect/
├── SKILL.md # Main skill definition
├── README.md # Usage guide
├── OVERVIEW.md # This file
│
├── scripts/ # Generation scripts
│ ├── detect_project.py # Project analysis
│ ├── generate_agents.py # Agent generation (11 templates)
│ └── generate_coordinator.py # Coordinator generation
│
├── templates/ # Output templates
│ ├── example-skill-template.md # Skill template structure
│ ├── example-command-template.md # Command template structure
│ └── example-hook-template.py # Hook template structure
│
├── examples/ # Complete examples
│ ├── EXAMPLE_WEB_APP.md # Next.js web app automation
│ └── EXAMPLE_PYTHON_CLI.md # Python CLI tool automation
│
└── references/ # Technical docs
└── COMMUNICATION_PROTOCOL.md # ACP specification
What This Meta-Skill Does
1. Interactive Discovery
- Analyzes project structure and tech stack
- Provides data-driven recommendations
- Asks targeted questions with smart defaults
- Never guesses - always validates with user
2. Generates Parallel Subagent System
- Analysis Agents - Run in parallel to analyze different domains
- Implementation Agents - Generate automation artifacts
- Validation Agents - Test and validate the system
- Coordinator Agent - Orchestrates the entire workflow
3. Creates Complete Automation
- Custom Agents - Specialized for project patterns
- Skills - Auto-invoked capabilities
- Commands - Slash commands for workflows
- Hooks - Event-driven automation
- MCP Integrations - External service connections
4. Enables Agent Communication
Uses Agent Communication Protocol (ACP) for coordination:
- File-based communication at
.claude/agents/context/{session-id}/ - Coordination file for status tracking
- Message bus for event transparency
- Standardized reports for findings
- Data artifacts for detailed exchange
Available Agent Templates
Analysis Agents (Run in Parallel)
- security-analyzer - Security vulnerabilities, auth flaws, secret exposure
- performance-analyzer - Bottlenecks, inefficient algorithms, optimization opportunities
- code-quality-analyzer - Code complexity, duplication, maintainability
- dependency-analyzer - Outdated packages, vulnerabilities, conflicts
- documentation-analyzer - Documentation completeness and quality
Implementation Agents
- skill-generator - Creates custom skills from findings
- command-generator - Creates slash commands for workflows
- hook-generator - Creates automation hooks
- mcp-configurator - Configures external integrations
Validation Agents
- integration-tester - Validates all components work together
- documentation-validator - Ensures comprehensive documentation
Agent Communication Protocol (ACP)
Core Concept
Parallel agents with isolated contexts communicate via structured files:
.claude/agents/context/{session-id}/
├── coordination.json # Status tracking
├── messages.jsonl # Event log (append-only)
├── reports/ # Agent outputs
│ └── {agent-name}.json
└── data/ # Shared artifacts
Key Features
- ✅ Asynchronous - Agents don't block each other
- ✅ Discoverable - Any agent can read any report
- ✅ Persistent - Survives crashes
- ✅ Transparent - Complete audit trail
- ✅ Orchestratable - Coordinator manages dependencies
See COMMUNICATION_PROTOCOL.md for full specification.
Usage Patterns
Basic Invocation
"Set up automation for my project"
Specific Project Type
"Create automation for my Next.js web app"
"Generate automation for my Python CLI tool"
"Set up automation for my data science workflow"
With Priorities
"Focus automation on testing and security"
"Prioritize documentation and code quality"
With Scope
"Create comprehensive automation with 8 agents"
"Generate basic automation (3-4 agents)"
Example Output
For a typical web application, generates:
.claude/
├── agents/
│ ├── security-analyzer.md
│ ├── performance-analyzer.md
│ ├── code-quality-analyzer.md
│ ├── skill-generator.md
│ ├── command-generator.md
│ └── automation-coordinator.md
│
├── skills/
│ ├── tdd-workflow/
│ ├── api-doc-generator/
│ └── security-checker/
│
├── commands/
│ ├── test-fix.md
│ ├── security-scan.md
│ └── perf-check.md
│
├── hooks/
│ ├── security_validation.py
│ └── run_tests.py
│
├── settings.json (updated)
├── AUTOMATION_README.md
└── QUICK_REFERENCE.md
Plus complete session data:
.claude/agents/context/{session-id}/
├── coordination.json
├── messages.jsonl
├── reports/
│ ├── security-analyzer.json
│ ├── performance-analyzer.json
│ └── ...
└── data/
└── ...
Workflow Phases
Phase 1: Discovery (Interactive)
- Project type detection with confidence scores
- Tech stack analysis
- Team size and workflow questions
- Pain point identification
- Priority setting
- Agent count recommendation
Phase 2: Setup
- Generate unique session ID
- Create communication directory structure
- Initialize coordination file
- Export environment variables
Phase 3: Analysis (Parallel)
- Launch analysis agents concurrently
- Each agent analyzes specific domain
- Agents log progress to message bus
- Generate standardized reports
- Update coordination status
Phase 4: Synthesis
- Coordinator reads all reports
- Aggregates findings
- Identifies patterns
- Makes decisions on what to generate
Phase 5: Implementation (Parallel)
- Launch implementation agents
- Generate skills, commands, hooks
- Configure MCP servers
- Create artifacts
Phase 6: Validation (Sequential)
- Test all components
- Validate documentation
- Ensure everything works
Phase 7: Delivery
- Generate documentation
- Create usage guides
- Report to user
Key Scripts
detect_project.py
# Analyzes project to determine:
# - Project type (web app, CLI, data science, etc.)
# - Tech stack (frameworks, languages)
# - Pain points (testing, docs, dependencies)
# - Statistics (file counts, test coverage)
python scripts/detect_project.py
generate_agents.py
# Generates specialized agents with communication protocol
# Available types: security-analyzer, performance-analyzer, etc.
python scripts/generate_agents.py \
--session-id "abc-123" \
--agent-type "security-analyzer" \
--output ".claude/agents/security-analyzer.md"
generate_coordinator.py
# Creates coordinator agent that orchestrates workflow
python scripts/generate_coordinator.py \
--session-id "abc-123" \
--agents "security,performance,quality" \
--output ".claude/agents/coordinator.md"
Benefits
For Solo Developers
- Automates tedious documentation and testing
- Provides instant code quality feedback
- Reduces context switching
- Focuses on writing code, not boilerplate
For Small Teams
- Standardizes workflows across team
- Ensures consistent code quality
- Automates code reviews
- Improves onboarding with documentation
For Large Projects
- Comprehensive analysis across domains
- Identifies technical debt systematically
- Provides actionable recommendations
- Scales with multiple parallel agents
Customization
All generated artifacts can be customized:
- Agents - Edit
.claude/agents/{agent-name}.md - Skills - Modify
.claude/skills/{skill-name}/SKILL.md - Commands - Update
.claude/commands/{command-name}.md - Hooks - Change
.claude/hooks/{hook-name}.py - Settings - Adjust
.claude/settings.json
Monitoring & Debugging
Watch Agent Progress
watch -n 2 'cat .claude/agents/context/*/coordination.json | jq ".agents"'
Follow Live Events
tail -f .claude/agents/context/*/messages.jsonl | jq
Check Reports
ls .claude/agents/context/*/reports/
cat .claude/agents/context/*/reports/security-analyzer.json | jq
Aggregate Findings
jq -s 'map(.findings[]) | map(select(.severity == "high"))' \
.claude/agents/context/*/reports/*.json
Best Practices
When Invoking
- Let the skill analyze your project first
- Answer questions honestly
- Use recommendations when unsure
- Start with moderate agent count
- Review generated automation
After Generation
- Read AUTOMATION_README.md
- Try example invocations
- Customize for your needs
- Review session logs to understand decisions
- Iterate based on usage
For Maintenance
- Review agent reports periodically
- Update skills as patterns evolve
- Add new commands for new workflows
- Adjust hooks as needed
- Keep documentation current
Technical Details
Requirements
- Python 3.8+
- Claude Code with Task tool support
- Write access to
.claude/directory
Dependencies
Scripts use only Python standard library:
json- JSON parsingsubprocess- Git analysispathlib- File operationsargparse- CLI parsing
Performance
- Analysis phase: 3-5 minutes (parallel execution)
- Implementation phase: 2-3 minutes (parallel execution)
- Validation phase: 1-2 minutes (sequential)
- Total: ~10-15 minutes for complete automation system
Scalability
- 2-3 agents: Basic projects, solo developers
- 4-6 agents: Medium projects, small teams
- 7-10 agents: Large projects, comprehensive coverage
- 10+ agents: Enterprise projects, all domains
Examples
Web Application (Next.js)
- 6 agents (4 analysis, 2 implementation)
- 3 skills (TDD workflow, API docs, security checker)
- 3 commands (test-fix, security-scan, perf-check)
- 2 hooks (security validation, run tests)
- GitHub MCP integration
Python CLI Tool
- 4 agents (2 analysis, 2 implementation)
- 2 skills (docstring generator, CLI test helper)
- 2 commands (test-cov, release-prep)
- 1 hook (auto-lint Python)
- Focused on documentation and testing
Related Claude Code Features
This meta-skill leverages:
- Task Tool - For parallel agent execution
- Skills System - Creates auto-invoked capabilities
- Commands - Creates user-invoked shortcuts
- Hooks - Enables event-driven automation
- MCP - Connects to external services
Support & Troubleshooting
Check Session Logs
# Review what happened
cat .claude/agents/context/{session-id}/messages.jsonl | jq
# Find errors
jq 'select(.type == "error")' .claude/agents/context/{session-id}/messages.jsonl
Agent Failed
# Check status
jq '.agents | to_entries | map(select(.value.status == "failed"))' \
.claude/agents/context/{session-id}/coordination.json
# Options:
# 1. Retry the agent
# 2. Continue without it
# 3. Manual intervention
Missing Reports
# List what was generated
ls .claude/agents/context/{session-id}/reports/
# Check if agent completed
jq '.agents["agent-name"]' \
.claude/agents/context/{session-id}/coordination.json
Future Enhancements
Potential additions:
- Language-specific analyzers (Go, Rust, Java)
- CI/CD integration agents
- Database optimization agent
- API design analyzer
- Accessibility checker
- Performance profiling agent
- Machine learning workflow agent
License & Attribution
Part of the Claude Code ecosystem. Generated with Meta-Automation Architect skill.
Ready to use? Simply say: "Set up automation for my project"
The meta-skill will guide you through the entire process with smart recommendations and generate a complete, customized automation system!