Initial commit

This commit is contained in:
Zhongwei Li
2025-11-29 18:16:03 +08:00
commit de3acf6886
13 changed files with 4359 additions and 0 deletions

View File

@@ -0,0 +1,12 @@
{
"name": "mcp-builder",
"description": "Guides creation of high-quality MCP (Model Context Protocol) servers for integrating external APIs and services with LLMs using Python or TypeScript.",
"version": "0.0.0-2025.11.28",
"author": {
"name": "ComposioHQ",
"email": "tech@composio.dev"
},
"skills": [
"./"
]
}

202
LICENSE.txt Normal file
View File

@@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

3
README.md Normal file
View File

@@ -0,0 +1,3 @@
# mcp-builder
Guides creation of high-quality MCP (Model Context Protocol) servers for integrating external APIs and services with LLMs using Python or TypeScript.

328
SKILL.md Normal file
View File

@@ -0,0 +1,328 @@
---
name: mcp-builder
description: Guide for creating high-quality MCP (Model Context Protocol) servers that enable LLMs to interact with external services through well-designed tools. Use when building MCP servers to integrate external APIs or services, whether in Python (FastMCP) or Node/TypeScript (MCP SDK).
license: Complete terms in LICENSE.txt
---
# MCP Server Development Guide
## Overview
To create high-quality MCP (Model Context Protocol) servers that enable LLMs to effectively interact with external services, use this skill. An MCP server provides tools that allow LLMs to access external services and APIs. The quality of an MCP server is measured by how well it enables LLMs to accomplish real-world tasks using the tools provided.
---
# Process
## 🚀 High-Level Workflow
Creating a high-quality MCP server involves four main phases:
### Phase 1: Deep Research and Planning
#### 1.1 Understand Agent-Centric Design Principles
Before diving into implementation, understand how to design tools for AI agents by reviewing these principles:
**Build for Workflows, Not Just API Endpoints:**
- Don't simply wrap existing API endpoints - build thoughtful, high-impact workflow tools
- Consolidate related operations (e.g., `schedule_event` that both checks availability and creates event)
- Focus on tools that enable complete tasks, not just individual API calls
- Consider what workflows agents actually need to accomplish
**Optimize for Limited Context:**
- Agents have constrained context windows - make every token count
- Return high-signal information, not exhaustive data dumps
- Provide "concise" vs "detailed" response format options
- Default to human-readable identifiers over technical codes (names over IDs)
- Consider the agent's context budget as a scarce resource
**Design Actionable Error Messages:**
- Error messages should guide agents toward correct usage patterns
- Suggest specific next steps: "Try using filter='active_only' to reduce results"
- Make errors educational, not just diagnostic
- Help agents learn proper tool usage through clear feedback
**Follow Natural Task Subdivisions:**
- Tool names should reflect how humans think about tasks
- Group related tools with consistent prefixes for discoverability
- Design tools around natural workflows, not just API structure
**Use Evaluation-Driven Development:**
- Create realistic evaluation scenarios early
- Let agent feedback drive tool improvements
- Prototype quickly and iterate based on actual agent performance
#### 1.3 Study MCP Protocol Documentation
**Fetch the latest MCP protocol documentation:**
Use WebFetch to load: `https://modelcontextprotocol.io/llms-full.txt`
This comprehensive document contains the complete MCP specification and guidelines.
#### 1.4 Study Framework Documentation
**Load and read the following reference files:**
- **MCP Best Practices**: [📋 View Best Practices](./reference/mcp_best_practices.md) - Core guidelines for all MCP servers
**For Python implementations, also load:**
- **Python SDK Documentation**: Use WebFetch to load `https://raw.githubusercontent.com/modelcontextprotocol/python-sdk/main/README.md`
- [🐍 Python Implementation Guide](./reference/python_mcp_server.md) - Python-specific best practices and examples
**For Node/TypeScript implementations, also load:**
- **TypeScript SDK Documentation**: Use WebFetch to load `https://raw.githubusercontent.com/modelcontextprotocol/typescript-sdk/main/README.md`
- [⚡ TypeScript Implementation Guide](./reference/node_mcp_server.md) - Node/TypeScript-specific best practices and examples
#### 1.5 Exhaustively Study API Documentation
To integrate a service, read through **ALL** available API documentation:
- Official API reference documentation
- Authentication and authorization requirements
- Rate limiting and pagination patterns
- Error responses and status codes
- Available endpoints and their parameters
- Data models and schemas
**To gather comprehensive information, use web search and the WebFetch tool as needed.**
#### 1.6 Create a Comprehensive Implementation Plan
Based on your research, create a detailed plan that includes:
**Tool Selection:**
- List the most valuable endpoints/operations to implement
- Prioritize tools that enable the most common and important use cases
- Consider which tools work together to enable complex workflows
**Shared Utilities and Helpers:**
- Identify common API request patterns
- Plan pagination helpers
- Design filtering and formatting utilities
- Plan error handling strategies
**Input/Output Design:**
- Define input validation models (Pydantic for Python, Zod for TypeScript)
- Design consistent response formats (e.g., JSON or Markdown), and configurable levels of detail (e.g., Detailed or Concise)
- Plan for large-scale usage (thousands of users/resources)
- Implement character limits and truncation strategies (e.g., 25,000 tokens)
**Error Handling Strategy:**
- Plan graceful failure modes
- Design clear, actionable, LLM-friendly, natural language error messages which prompt further action
- Consider rate limiting and timeout scenarios
- Handle authentication and authorization errors
---
### Phase 2: Implementation
Now that you have a comprehensive plan, begin implementation following language-specific best practices.
#### 2.1 Set Up Project Structure
**For Python:**
- Create a single `.py` file or organize into modules if complex (see [🐍 Python Guide](./reference/python_mcp_server.md))
- Use the MCP Python SDK for tool registration
- Define Pydantic models for input validation
**For Node/TypeScript:**
- Create proper project structure (see [⚡ TypeScript Guide](./reference/node_mcp_server.md))
- Set up `package.json` and `tsconfig.json`
- Use MCP TypeScript SDK
- Define Zod schemas for input validation
#### 2.2 Implement Core Infrastructure First
**To begin implementation, create shared utilities before implementing tools:**
- API request helper functions
- Error handling utilities
- Response formatting functions (JSON and Markdown)
- Pagination helpers
- Authentication/token management
#### 2.3 Implement Tools Systematically
For each tool in the plan:
**Define Input Schema:**
- Use Pydantic (Python) or Zod (TypeScript) for validation
- Include proper constraints (min/max length, regex patterns, min/max values, ranges)
- Provide clear, descriptive field descriptions
- Include diverse examples in field descriptions
**Write Comprehensive Docstrings/Descriptions:**
- One-line summary of what the tool does
- Detailed explanation of purpose and functionality
- Explicit parameter types with examples
- Complete return type schema
- Usage examples (when to use, when not to use)
- Error handling documentation, which outlines how to proceed given specific errors
**Implement Tool Logic:**
- Use shared utilities to avoid code duplication
- Follow async/await patterns for all I/O
- Implement proper error handling
- Support multiple response formats (JSON and Markdown)
- Respect pagination parameters
- Check character limits and truncate appropriately
**Add Tool Annotations:**
- `readOnlyHint`: true (for read-only operations)
- `destructiveHint`: false (for non-destructive operations)
- `idempotentHint`: true (if repeated calls have same effect)
- `openWorldHint`: true (if interacting with external systems)
#### 2.4 Follow Language-Specific Best Practices
**At this point, load the appropriate language guide:**
**For Python: Load [🐍 Python Implementation Guide](./reference/python_mcp_server.md) and ensure the following:**
- Using MCP Python SDK with proper tool registration
- Pydantic v2 models with `model_config`
- Type hints throughout
- Async/await for all I/O operations
- Proper imports organization
- Module-level constants (CHARACTER_LIMIT, API_BASE_URL)
**For Node/TypeScript: Load [⚡ TypeScript Implementation Guide](./reference/node_mcp_server.md) and ensure the following:**
- Using `server.registerTool` properly
- Zod schemas with `.strict()`
- TypeScript strict mode enabled
- No `any` types - use proper types
- Explicit Promise<T> return types
- Build process configured (`npm run build`)
---
### Phase 3: Review and Refine
After initial implementation:
#### 3.1 Code Quality Review
To ensure quality, review the code for:
- **DRY Principle**: No duplicated code between tools
- **Composability**: Shared logic extracted into functions
- **Consistency**: Similar operations return similar formats
- **Error Handling**: All external calls have error handling
- **Type Safety**: Full type coverage (Python type hints, TypeScript types)
- **Documentation**: Every tool has comprehensive docstrings/descriptions
#### 3.2 Test and Build
**Important:** MCP servers are long-running processes that wait for requests over stdio/stdin or sse/http. Running them directly in your main process (e.g., `python server.py` or `node dist/index.js`) will cause your process to hang indefinitely.
**Safe ways to test the server:**
- Use the evaluation harness (see Phase 4) - recommended approach
- Run the server in tmux to keep it outside your main process
- Use a timeout when testing: `timeout 5s python server.py`
**For Python:**
- Verify Python syntax: `python -m py_compile your_server.py`
- Check imports work correctly by reviewing the file
- To manually test: Run server in tmux, then test with evaluation harness in main process
- Or use the evaluation harness directly (it manages the server for stdio transport)
**For Node/TypeScript:**
- Run `npm run build` and ensure it completes without errors
- Verify dist/index.js is created
- To manually test: Run server in tmux, then test with evaluation harness in main process
- Or use the evaluation harness directly (it manages the server for stdio transport)
#### 3.3 Use Quality Checklist
To verify implementation quality, load the appropriate checklist from the language-specific guide:
- Python: see "Quality Checklist" in [🐍 Python Guide](./reference/python_mcp_server.md)
- Node/TypeScript: see "Quality Checklist" in [⚡ TypeScript Guide](./reference/node_mcp_server.md)
---
### Phase 4: Create Evaluations
After implementing your MCP server, create comprehensive evaluations to test its effectiveness.
**Load [✅ Evaluation Guide](./reference/evaluation.md) for complete evaluation guidelines.**
#### 4.1 Understand Evaluation Purpose
Evaluations test whether LLMs can effectively use your MCP server to answer realistic, complex questions.
#### 4.2 Create 10 Evaluation Questions
To create effective evaluations, follow the process outlined in the evaluation guide:
1. **Tool Inspection**: List available tools and understand their capabilities
2. **Content Exploration**: Use READ-ONLY operations to explore available data
3. **Question Generation**: Create 10 complex, realistic questions
4. **Answer Verification**: Solve each question yourself to verify answers
#### 4.3 Evaluation Requirements
Each question must be:
- **Independent**: Not dependent on other questions
- **Read-only**: Only non-destructive operations required
- **Complex**: Requiring multiple tool calls and deep exploration
- **Realistic**: Based on real use cases humans would care about
- **Verifiable**: Single, clear answer that can be verified by string comparison
- **Stable**: Answer won't change over time
#### 4.4 Output Format
Create an XML file with this structure:
```xml
<evaluation>
<qa_pair>
<question>Find discussions about AI model launches with animal codenames. One model needed a specific safety designation that uses the format ASL-X. What number X was being determined for the model named after a spotted wild cat?</question>
<answer>3</answer>
</qa_pair>
<!-- More qa_pairs... -->
</evaluation>
```
---
# Reference Files
## 📚 Documentation Library
Load these resources as needed during development:
### Core MCP Documentation (Load First)
- **MCP Protocol**: Fetch from `https://modelcontextprotocol.io/llms-full.txt` - Complete MCP specification
- [📋 MCP Best Practices](./reference/mcp_best_practices.md) - Universal MCP guidelines including:
- Server and tool naming conventions
- Response format guidelines (JSON vs Markdown)
- Pagination best practices
- Character limits and truncation strategies
- Tool development guidelines
- Security and error handling standards
### SDK Documentation (Load During Phase 1/2)
- **Python SDK**: Fetch from `https://raw.githubusercontent.com/modelcontextprotocol/python-sdk/main/README.md`
- **TypeScript SDK**: Fetch from `https://raw.githubusercontent.com/modelcontextprotocol/typescript-sdk/main/README.md`
### Language-Specific Implementation Guides (Load During Phase 2)
- [🐍 Python Implementation Guide](./reference/python_mcp_server.md) - Complete Python/FastMCP guide with:
- Server initialization patterns
- Pydantic model examples
- Tool registration with `@mcp.tool`
- Complete working examples
- Quality checklist
- [⚡ TypeScript Implementation Guide](./reference/node_mcp_server.md) - Complete TypeScript guide with:
- Project structure
- Zod schema patterns
- Tool registration with `server.registerTool`
- Complete working examples
- Quality checklist
### Evaluation Guide (Load During Phase 4)
- [✅ Evaluation Guide](./reference/evaluation.md) - Complete evaluation creation guide with:
- Question creation guidelines
- Answer verification strategies
- XML format specifications
- Example questions and answers
- Running an evaluation with the provided scripts

81
plugin.lock.json Normal file
View File

@@ -0,0 +1,81 @@
{
"$schema": "internal://schemas/plugin.lock.v1.json",
"pluginId": "gh:ComposioHQ/awesome-claude-skills:mcp-builder",
"normalized": {
"repo": null,
"ref": "refs/tags/v20251128.0",
"commit": "ebd98479843e51b0e3fa9903725f600a9b7184f8",
"treeHash": "c1b300be63dba08470cdb71663139eb77e0e013f434de6bed4d68085c76a3cfc",
"generatedAt": "2025-11-28T10:10:07.019389Z",
"toolVersion": "publish_plugins.py@0.2.0"
},
"origin": {
"remote": "git@github.com:zhongweili/42plugin-data.git",
"branch": "master",
"commit": "aa1497ed0949fd50e99e70d6324a29c5b34f9390",
"repoRoot": "/Users/zhongweili/projects/openmind/42plugin-data"
},
"manifest": {
"name": "mcp-builder",
"description": "Guides creation of high-quality MCP (Model Context Protocol) servers for integrating external APIs and services with LLMs using Python or TypeScript.",
"version": null
},
"content": {
"files": [
{
"path": "README.md",
"sha256": "e1d54dc87f5f55bb18e6903a3abc516a752f633374be43061e278665acf8cef5"
},
{
"path": "SKILL.md",
"sha256": "b1010e90adcb8fd6bf57640df34ab6454fbf7e4216e150a4620f7caccadc4e63"
},
{
"path": "LICENSE.txt",
"sha256": "58d1e17ffe5109a7ae296caafcadfdbe6a7d176f0bc4ab01e12a689b0499d8bd"
},
{
"path": "scripts/requirements.txt",
"sha256": "d5d7558b2368ecea9dfeed7d1fbc71ee9e0750bebd1282faa527d528a344c3c7"
},
{
"path": "scripts/evaluation.py",
"sha256": "49ed1d17cdce5da101b210197740713f49b935c29d4f339542a14b132658e6f7"
},
{
"path": "scripts/connections.py",
"sha256": "9403668a2041568772082a8b334122c1f88daf0541fb393af4522d0094a47a6e"
},
{
"path": "scripts/example_evaluation.xml",
"sha256": "9272b348ddcc4b06ba562367ccd0770e018158c0068ac5116d5e34aaeff8777a"
},
{
"path": ".claude-plugin/plugin.json",
"sha256": "347c8e86489bfc19a8a3510e52eb6d7b858084b2a3385cd213632f14461a46d1"
},
{
"path": "reference/mcp_best_practices.md",
"sha256": "3bdf013379bdd3c198baccd0f183441c710fc7cae07ba4c6f8f8048276519688"
},
{
"path": "reference/python_mcp_server.md",
"sha256": "4e6db48188f44ff4eb707f50b8d273d5d18af4b88d326f7a26f03a405064bc0b"
},
{
"path": "reference/node_mcp_server.md",
"sha256": "40b03e9c07463d5db524c1f5140ef60713fdd911c2f4386f89e0b94d43b8764e"
},
{
"path": "reference/evaluation.md",
"sha256": "8c99479f8a2d22a636c38e274537aac3610879e26f34e0709825077c4576f427"
}
],
"dirSha256": "c1b300be63dba08470cdb71663139eb77e0e013f434de6bed4d68085c76a3cfc"
},
"security": {
"scannedAt": null,
"scannerVersion": null,
"flags": []
}
}

602
reference/evaluation.md Normal file
View File

@@ -0,0 +1,602 @@
# MCP Server Evaluation Guide
## Overview
This document provides guidance on creating comprehensive evaluations for MCP servers. Evaluations test whether LLMs can effectively use your MCP server to answer realistic, complex questions using only the tools provided.
---
## Quick Reference
### Evaluation Requirements
- Create 10 human-readable questions
- Questions must be READ-ONLY, INDEPENDENT, NON-DESTRUCTIVE
- Each question requires multiple tool calls (potentially dozens)
- Answers must be single, verifiable values
- Answers must be STABLE (won't change over time)
### Output Format
```xml
<evaluation>
<qa_pair>
<question>Your question here</question>
<answer>Single verifiable answer</answer>
</qa_pair>
</evaluation>
```
---
## Purpose of Evaluations
The measure of quality of an MCP server is NOT how well or comprehensively the server implements tools, but how well these implementations (input/output schemas, docstrings/descriptions, functionality) enable LLMs with no other context and access ONLY to the MCP servers to answer realistic and difficult questions.
## Evaluation Overview
Create 10 human-readable questions requiring ONLY READ-ONLY, INDEPENDENT, NON-DESTRUCTIVE, and IDEMPOTENT operations to answer. Each question should be:
- Realistic
- Clear and concise
- Unambiguous
- Complex, requiring potentially dozens of tool calls or steps
- Answerable with a single, verifiable value that you identify in advance
## Question Guidelines
### Core Requirements
1. **Questions MUST be independent**
- Each question should NOT depend on the answer to any other question
- Should not assume prior write operations from processing another question
2. **Questions MUST require ONLY NON-DESTRUCTIVE AND IDEMPOTENT tool use**
- Should not instruct or require modifying state to arrive at the correct answer
3. **Questions must be REALISTIC, CLEAR, CONCISE, and COMPLEX**
- Must require another LLM to use multiple (potentially dozens of) tools or steps to answer
### Complexity and Depth
4. **Questions must require deep exploration**
- Consider multi-hop questions requiring multiple sub-questions and sequential tool calls
- Each step should benefit from information found in previous questions
5. **Questions may require extensive paging**
- May need paging through multiple pages of results
- May require querying old data (1-2 years out-of-date) to find niche information
- The questions must be DIFFICULT
6. **Questions must require deep understanding**
- Rather than surface-level knowledge
- May pose complex ideas as True/False questions requiring evidence
- May use multiple-choice format where LLM must search different hypotheses
7. **Questions must not be solvable with straightforward keyword search**
- Do not include specific keywords from the target content
- Use synonyms, related concepts, or paraphrases
- Require multiple searches, analyzing multiple related items, extracting context, then deriving the answer
### Tool Testing
8. **Questions should stress-test tool return values**
- May elicit tools returning large JSON objects or lists, overwhelming the LLM
- Should require understanding multiple modalities of data:
- IDs and names
- Timestamps and datetimes (months, days, years, seconds)
- File IDs, names, extensions, and mimetypes
- URLs, GIDs, etc.
- Should probe the tool's ability to return all useful forms of data
9. **Questions should MOSTLY reflect real human use cases**
- The kinds of information retrieval tasks that HUMANS assisted by an LLM would care about
10. **Questions may require dozens of tool calls**
- This challenges LLMs with limited context
- Encourages MCP server tools to reduce information returned
11. **Include ambiguous questions**
- May be ambiguous OR require difficult decisions on which tools to call
- Force the LLM to potentially make mistakes or misinterpret
- Ensure that despite AMBIGUITY, there is STILL A SINGLE VERIFIABLE ANSWER
### Stability
12. **Questions must be designed so the answer DOES NOT CHANGE**
- Do not ask questions that rely on "current state" which is dynamic
- For example, do not count:
- Number of reactions to a post
- Number of replies to a thread
- Number of members in a channel
13. **DO NOT let the MCP server RESTRICT the kinds of questions you create**
- Create challenging and complex questions
- Some may not be solvable with the available MCP server tools
- Questions may require specific output formats (datetime vs. epoch time, JSON vs. MARKDOWN)
- Questions may require dozens of tool calls to complete
## Answer Guidelines
### Verification
1. **Answers must be VERIFIABLE via direct string comparison**
- If the answer can be re-written in many formats, clearly specify the output format in the QUESTION
- Examples: "Use YYYY/MM/DD.", "Respond True or False.", "Answer A, B, C, or D and nothing else."
- Answer should be a single VERIFIABLE value such as:
- User ID, user name, display name, first name, last name
- Channel ID, channel name
- Message ID, string
- URL, title
- Numerical quantity
- Timestamp, datetime
- Boolean (for True/False questions)
- Email address, phone number
- File ID, file name, file extension
- Multiple choice answer
- Answers must not require special formatting or complex, structured output
- Answer will be verified using DIRECT STRING COMPARISON
### Readability
2. **Answers should generally prefer HUMAN-READABLE formats**
- Examples: names, first name, last name, datetime, file name, message string, URL, yes/no, true/false, a/b/c/d
- Rather than opaque IDs (though IDs are acceptable)
- The VAST MAJORITY of answers should be human-readable
### Stability
3. **Answers must be STABLE/STATIONARY**
- Look at old content (e.g., conversations that have ended, projects that have launched, questions answered)
- Create QUESTIONS based on "closed" concepts that will always return the same answer
- Questions may ask to consider a fixed time window to insulate from non-stationary answers
- Rely on context UNLIKELY to change
- Example: if finding a paper name, be SPECIFIC enough so answer is not confused with papers published later
4. **Answers must be CLEAR and UNAMBIGUOUS**
- Questions must be designed so there is a single, clear answer
- Answer can be derived from using the MCP server tools
### Diversity
5. **Answers must be DIVERSE**
- Answer should be a single VERIFIABLE value in diverse modalities and formats
- User concept: user ID, user name, display name, first name, last name, email address, phone number
- Channel concept: channel ID, channel name, channel topic
- Message concept: message ID, message string, timestamp, month, day, year
6. **Answers must NOT be complex structures**
- Not a list of values
- Not a complex object
- Not a list of IDs or strings
- Not natural language text
- UNLESS the answer can be straightforwardly verified using DIRECT STRING COMPARISON
- And can be realistically reproduced
- It should be unlikely that an LLM would return the same list in any other order or format
## Evaluation Process
### Step 1: Documentation Inspection
Read the documentation of the target API to understand:
- Available endpoints and functionality
- If ambiguity exists, fetch additional information from the web
- Parallelize this step AS MUCH AS POSSIBLE
- Ensure each subagent is ONLY examining documentation from the file system or on the web
### Step 2: Tool Inspection
List the tools available in the MCP server:
- Inspect the MCP server directly
- Understand input/output schemas, docstrings, and descriptions
- WITHOUT calling the tools themselves at this stage
### Step 3: Developing Understanding
Repeat steps 1 & 2 until you have a good understanding:
- Iterate multiple times
- Think about the kinds of tasks you want to create
- Refine your understanding
- At NO stage should you READ the code of the MCP server implementation itself
- Use your intuition and understanding to create reasonable, realistic, but VERY challenging tasks
### Step 4: Read-Only Content Inspection
After understanding the API and tools, USE the MCP server tools:
- Inspect content using READ-ONLY and NON-DESTRUCTIVE operations ONLY
- Goal: identify specific content (e.g., users, channels, messages, projects, tasks) for creating realistic questions
- Should NOT call any tools that modify state
- Will NOT read the code of the MCP server implementation itself
- Parallelize this step with individual sub-agents pursuing independent explorations
- Ensure each subagent is only performing READ-ONLY, NON-DESTRUCTIVE, and IDEMPOTENT operations
- BE CAREFUL: SOME TOOLS may return LOTS OF DATA which would cause you to run out of CONTEXT
- Make INCREMENTAL, SMALL, AND TARGETED tool calls for exploration
- In all tool call requests, use the `limit` parameter to limit results (<10)
- Use pagination
### Step 5: Task Generation
After inspecting the content, create 10 human-readable questions:
- An LLM should be able to answer these with the MCP server
- Follow all question and answer guidelines above
## Output Format
Each QA pair consists of a question and an answer. The output should be an XML file with this structure:
```xml
<evaluation>
<qa_pair>
<question>Find the project created in Q2 2024 with the highest number of completed tasks. What is the project name?</question>
<answer>Website Redesign</answer>
</qa_pair>
<qa_pair>
<question>Search for issues labeled as "bug" that were closed in March 2024. Which user closed the most issues? Provide their username.</question>
<answer>sarah_dev</answer>
</qa_pair>
<qa_pair>
<question>Look for pull requests that modified files in the /api directory and were merged between January 1 and January 31, 2024. How many different contributors worked on these PRs?</question>
<answer>7</answer>
</qa_pair>
<qa_pair>
<question>Find the repository with the most stars that was created before 2023. What is the repository name?</question>
<answer>data-pipeline</answer>
</qa_pair>
</evaluation>
```
## Evaluation Examples
### Good Questions
**Example 1: Multi-hop question requiring deep exploration (GitHub MCP)**
```xml
<qa_pair>
<question>Find the repository that was archived in Q3 2023 and had previously been the most forked project in the organization. What was the primary programming language used in that repository?</question>
<answer>Python</answer>
</qa_pair>
```
This question is good because:
- Requires multiple searches to find archived repositories
- Needs to identify which had the most forks before archival
- Requires examining repository details for the language
- Answer is a simple, verifiable value
- Based on historical (closed) data that won't change
**Example 2: Requires understanding context without keyword matching (Project Management MCP)**
```xml
<qa_pair>
<question>Locate the initiative focused on improving customer onboarding that was completed in late 2023. The project lead created a retrospective document after completion. What was the lead's role title at that time?</question>
<answer>Product Manager</answer>
</qa_pair>
```
This question is good because:
- Doesn't use specific project name ("initiative focused on improving customer onboarding")
- Requires finding completed projects from specific timeframe
- Needs to identify the project lead and their role
- Requires understanding context from retrospective documents
- Answer is human-readable and stable
- Based on completed work (won't change)
**Example 3: Complex aggregation requiring multiple steps (Issue Tracker MCP)**
```xml
<qa_pair>
<question>Among all bugs reported in January 2024 that were marked as critical priority, which assignee resolved the highest percentage of their assigned bugs within 48 hours? Provide the assignee's username.</question>
<answer>alex_eng</answer>
</qa_pair>
```
This question is good because:
- Requires filtering bugs by date, priority, and status
- Needs to group by assignee and calculate resolution rates
- Requires understanding timestamps to determine 48-hour windows
- Tests pagination (potentially many bugs to process)
- Answer is a single username
- Based on historical data from specific time period
**Example 4: Requires synthesis across multiple data types (CRM MCP)**
```xml
<qa_pair>
<question>Find the account that upgraded from the Starter to Enterprise plan in Q4 2023 and had the highest annual contract value. What industry does this account operate in?</question>
<answer>Healthcare</answer>
</qa_pair>
```
This question is good because:
- Requires understanding subscription tier changes
- Needs to identify upgrade events in specific timeframe
- Requires comparing contract values
- Must access account industry information
- Answer is simple and verifiable
- Based on completed historical transactions
### Poor Questions
**Example 1: Answer changes over time**
```xml
<qa_pair>
<question>How many open issues are currently assigned to the engineering team?</question>
<answer>47</answer>
</qa_pair>
```
This question is poor because:
- The answer will change as issues are created, closed, or reassigned
- Not based on stable/stationary data
- Relies on "current state" which is dynamic
**Example 2: Too easy with keyword search**
```xml
<qa_pair>
<question>Find the pull request with title "Add authentication feature" and tell me who created it.</question>
<answer>developer123</answer>
</qa_pair>
```
This question is poor because:
- Can be solved with a straightforward keyword search for exact title
- Doesn't require deep exploration or understanding
- No synthesis or analysis needed
**Example 3: Ambiguous answer format**
```xml
<qa_pair>
<question>List all the repositories that have Python as their primary language.</question>
<answer>repo1, repo2, repo3, data-pipeline, ml-tools</answer>
</qa_pair>
```
This question is poor because:
- Answer is a list that could be returned in any order
- Difficult to verify with direct string comparison
- LLM might format differently (JSON array, comma-separated, newline-separated)
- Better to ask for a specific aggregate (count) or superlative (most stars)
## Verification Process
After creating evaluations:
1. **Examine the XML file** to understand the schema
2. **Load each task instruction** and in parallel using the MCP server and tools, identify the correct answer by attempting to solve the task YOURSELF
3. **Flag any operations** that require WRITE or DESTRUCTIVE operations
4. **Accumulate all CORRECT answers** and replace any incorrect answers in the document
5. **Remove any `<qa_pair>`** that require WRITE or DESTRUCTIVE operations
Remember to parallelize solving tasks to avoid running out of context, then accumulate all answers and make changes to the file at the end.
## Tips for Creating Quality Evaluations
1. **Think Hard and Plan Ahead** before generating tasks
2. **Parallelize Where Opportunity Arises** to speed up the process and manage context
3. **Focus on Realistic Use Cases** that humans would actually want to accomplish
4. **Create Challenging Questions** that test the limits of the MCP server's capabilities
5. **Ensure Stability** by using historical data and closed concepts
6. **Verify Answers** by solving the questions yourself using the MCP server tools
7. **Iterate and Refine** based on what you learn during the process
---
# Running Evaluations
After creating your evaluation file, you can use the provided evaluation harness to test your MCP server.
## Setup
1. **Install Dependencies**
```bash
pip install -r scripts/requirements.txt
```
Or install manually:
```bash
pip install anthropic mcp
```
2. **Set API Key**
```bash
export ANTHROPIC_API_KEY=your_api_key_here
```
## Evaluation File Format
Evaluation files use XML format with `<qa_pair>` elements:
```xml
<evaluation>
<qa_pair>
<question>Find the project created in Q2 2024 with the highest number of completed tasks. What is the project name?</question>
<answer>Website Redesign</answer>
</qa_pair>
<qa_pair>
<question>Search for issues labeled as "bug" that were closed in March 2024. Which user closed the most issues? Provide their username.</question>
<answer>sarah_dev</answer>
</qa_pair>
</evaluation>
```
## Running Evaluations
The evaluation script (`scripts/evaluation.py`) supports three transport types:
**Important:**
- **stdio transport**: The evaluation script automatically launches and manages the MCP server process for you. Do not run the server manually.
- **sse/http transports**: You must start the MCP server separately before running the evaluation. The script connects to the already-running server at the specified URL.
### 1. Local STDIO Server
For locally-run MCP servers (script launches the server automatically):
```bash
python scripts/evaluation.py \
-t stdio \
-c python \
-a my_mcp_server.py \
evaluation.xml
```
With environment variables:
```bash
python scripts/evaluation.py \
-t stdio \
-c python \
-a my_mcp_server.py \
-e API_KEY=abc123 \
-e DEBUG=true \
evaluation.xml
```
### 2. Server-Sent Events (SSE)
For SSE-based MCP servers (you must start the server first):
```bash
python scripts/evaluation.py \
-t sse \
-u https://example.com/mcp \
-H "Authorization: Bearer token123" \
-H "X-Custom-Header: value" \
evaluation.xml
```
### 3. HTTP (Streamable HTTP)
For HTTP-based MCP servers (you must start the server first):
```bash
python scripts/evaluation.py \
-t http \
-u https://example.com/mcp \
-H "Authorization: Bearer token123" \
evaluation.xml
```
## Command-Line Options
```
usage: evaluation.py [-h] [-t {stdio,sse,http}] [-m MODEL] [-c COMMAND]
[-a ARGS [ARGS ...]] [-e ENV [ENV ...]] [-u URL]
[-H HEADERS [HEADERS ...]] [-o OUTPUT]
eval_file
positional arguments:
eval_file Path to evaluation XML file
optional arguments:
-h, --help Show help message
-t, --transport Transport type: stdio, sse, or http (default: stdio)
-m, --model Claude model to use (default: claude-3-7-sonnet-20250219)
-o, --output Output file for report (default: print to stdout)
stdio options:
-c, --command Command to run MCP server (e.g., python, node)
-a, --args Arguments for the command (e.g., server.py)
-e, --env Environment variables in KEY=VALUE format
sse/http options:
-u, --url MCP server URL
-H, --header HTTP headers in 'Key: Value' format
```
## Output
The evaluation script generates a detailed report including:
- **Summary Statistics**:
- Accuracy (correct/total)
- Average task duration
- Average tool calls per task
- Total tool calls
- **Per-Task Results**:
- Prompt and expected response
- Actual response from the agent
- Whether the answer was correct (✅/❌)
- Duration and tool call details
- Agent's summary of its approach
- Agent's feedback on the tools
### Save Report to File
```bash
python scripts/evaluation.py \
-t stdio \
-c python \
-a my_server.py \
-o evaluation_report.md \
evaluation.xml
```
## Complete Example Workflow
Here's a complete example of creating and running an evaluation:
1. **Create your evaluation file** (`my_evaluation.xml`):
```xml
<evaluation>
<qa_pair>
<question>Find the user who created the most issues in January 2024. What is their username?</question>
<answer>alice_developer</answer>
</qa_pair>
<qa_pair>
<question>Among all pull requests merged in Q1 2024, which repository had the highest number? Provide the repository name.</question>
<answer>backend-api</answer>
</qa_pair>
<qa_pair>
<question>Find the project that was completed in December 2023 and had the longest duration from start to finish. How many days did it take?</question>
<answer>127</answer>
</qa_pair>
</evaluation>
```
2. **Install dependencies**:
```bash
pip install -r scripts/requirements.txt
export ANTHROPIC_API_KEY=your_api_key
```
3. **Run evaluation**:
```bash
python scripts/evaluation.py \
-t stdio \
-c python \
-a github_mcp_server.py \
-e GITHUB_TOKEN=ghp_xxx \
-o github_eval_report.md \
my_evaluation.xml
```
4. **Review the report** in `github_eval_report.md` to:
- See which questions passed/failed
- Read the agent's feedback on your tools
- Identify areas for improvement
- Iterate on your MCP server design
## Troubleshooting
### Connection Errors
If you get connection errors:
- **STDIO**: Verify the command and arguments are correct
- **SSE/HTTP**: Check the URL is accessible and headers are correct
- Ensure any required API keys are set in environment variables or headers
### Low Accuracy
If many evaluations fail:
- Review the agent's feedback for each task
- Check if tool descriptions are clear and comprehensive
- Verify input parameters are well-documented
- Consider whether tools return too much or too little data
- Ensure error messages are actionable
### Timeout Issues
If tasks are timing out:
- Use a more capable model (e.g., `claude-3-7-sonnet-20250219`)
- Check if tools are returning too much data
- Verify pagination is working correctly
- Consider simplifying complex questions

View File

@@ -0,0 +1,915 @@
# MCP Server Development Best Practices and Guidelines
## Overview
This document compiles essential best practices and guidelines for building Model Context Protocol (MCP) servers. It covers naming conventions, tool design, response formats, pagination, error handling, security, and compliance requirements.
---
## Quick Reference
### Server Naming
- **Python**: `{service}_mcp` (e.g., `slack_mcp`)
- **Node/TypeScript**: `{service}-mcp-server` (e.g., `slack-mcp-server`)
### Tool Naming
- Use snake_case with service prefix
- Format: `{service}_{action}_{resource}`
- Example: `slack_send_message`, `github_create_issue`
### Response Formats
- Support both JSON and Markdown formats
- JSON for programmatic processing
- Markdown for human readability
### Pagination
- Always respect `limit` parameter
- Return `has_more`, `next_offset`, `total_count`
- Default to 20-50 items
### Character Limits
- Set CHARACTER_LIMIT constant (typically 25,000)
- Truncate gracefully with clear messages
- Provide guidance on filtering
---
## Table of Contents
1. Server Naming Conventions
2. Tool Naming and Design
3. Response Format Guidelines
4. Pagination Best Practices
5. Character Limits and Truncation
6. Tool Development Best Practices
7. Transport Best Practices
8. Testing Requirements
9. OAuth and Security Best Practices
10. Resource Management Best Practices
11. Prompt Management Best Practices
12. Error Handling Standards
13. Documentation Requirements
14. Compliance and Monitoring
---
## 1. Server Naming Conventions
Follow these standardized naming patterns for MCP servers:
**Python**: Use format `{service}_mcp` (lowercase with underscores)
- Examples: `slack_mcp`, `github_mcp`, `jira_mcp`, `stripe_mcp`
**Node/TypeScript**: Use format `{service}-mcp-server` (lowercase with hyphens)
- Examples: `slack-mcp-server`, `github-mcp-server`, `jira-mcp-server`
The name should be:
- General (not tied to specific features)
- Descriptive of the service/API being integrated
- Easy to infer from the task description
- Without version numbers or dates
---
## 2. Tool Naming and Design
### Tool Naming Best Practices
1. **Use snake_case**: `search_users`, `create_project`, `get_channel_info`
2. **Include service prefix**: Anticipate that your MCP server may be used alongside other MCP servers
- Use `slack_send_message` instead of just `send_message`
- Use `github_create_issue` instead of just `create_issue`
- Use `asana_list_tasks` instead of just `list_tasks`
3. **Be action-oriented**: Start with verbs (get, list, search, create, etc.)
4. **Be specific**: Avoid generic names that could conflict with other servers
5. **Maintain consistency**: Use consistent naming patterns within your server
### Tool Design Guidelines
- Tool descriptions must narrowly and unambiguously describe functionality
- Descriptions must precisely match actual functionality
- Should not create confusion with other MCP servers
- Should provide tool annotations (readOnlyHint, destructiveHint, idempotentHint, openWorldHint)
- Keep tool operations focused and atomic
---
## 3. Response Format Guidelines
All tools that return data should support multiple formats for flexibility:
### JSON Format (`response_format="json"`)
- Machine-readable structured data
- Include all available fields and metadata
- Consistent field names and types
- Suitable for programmatic processing
- Use for when LLMs need to process data further
### Markdown Format (`response_format="markdown"`, typically default)
- Human-readable formatted text
- Use headers, lists, and formatting for clarity
- Convert timestamps to human-readable format (e.g., "2024-01-15 10:30:00 UTC" instead of epoch)
- Show display names with IDs in parentheses (e.g., "@john.doe (U123456)")
- Omit verbose metadata (e.g., show only one profile image URL, not all sizes)
- Group related information logically
- Use for when presenting information to users
---
## 4. Pagination Best Practices
For tools that list resources:
- **Always respect the `limit` parameter**: Never load all results when a limit is specified
- **Implement pagination**: Use `offset` or cursor-based pagination
- **Return pagination metadata**: Include `has_more`, `next_offset`/`next_cursor`, `total_count`
- **Never load all results into memory**: Especially important for large datasets
- **Default to reasonable limits**: 20-50 items is typical
- **Include clear pagination info in responses**: Make it easy for LLMs to request more data
Example pagination response structure:
```json
{
"total": 150,
"count": 20,
"offset": 0,
"items": [...],
"has_more": true,
"next_offset": 20
}
```
---
## 5. Character Limits and Truncation
To prevent overwhelming responses with too much data:
- **Define CHARACTER_LIMIT constant**: Typically 25,000 characters at module level
- **Check response size before returning**: Measure the final response length
- **Truncate gracefully with clear indicators**: Let the LLM know data was truncated
- **Provide guidance on filtering**: Suggest how to use parameters to reduce results
- **Include truncation metadata**: Show what was truncated and how to get more
Example truncation handling:
```python
CHARACTER_LIMIT = 25000
if len(result) > CHARACTER_LIMIT:
truncated_data = data[:max(1, len(data) // 2)]
response["truncated"] = True
response["truncation_message"] = (
f"Response truncated from {len(data)} to {len(truncated_data)} items. "
f"Use 'offset' parameter or add filters to see more results."
)
```
---
## 6. Transport Options
MCP servers support multiple transport mechanisms for different deployment scenarios:
### Stdio Transport
**Best for**: Command-line tools, local integrations, subprocess execution
**Characteristics**:
- Standard input/output stream communication
- Simple setup, no network configuration needed
- Runs as a subprocess of the client
- Ideal for desktop applications and CLI tools
**Use when**:
- Building tools for local development environments
- Integrating with desktop applications (e.g., Claude Desktop)
- Creating command-line utilities
- Single-user, single-session scenarios
### HTTP Transport
**Best for**: Web services, remote access, multi-client scenarios
**Characteristics**:
- Request-response pattern over HTTP
- Supports multiple simultaneous clients
- Can be deployed as a web service
- Requires network configuration and security considerations
**Use when**:
- Serving multiple clients simultaneously
- Deploying as a cloud service
- Integration with web applications
- Need for load balancing or scaling
### Server-Sent Events (SSE) Transport
**Best for**: Real-time updates, push notifications, streaming data
**Characteristics**:
- One-way server-to-client streaming over HTTP
- Enables real-time updates without polling
- Long-lived connections for continuous data flow
- Built on standard HTTP infrastructure
**Use when**:
- Clients need real-time data updates
- Implementing push notifications
- Streaming logs or monitoring data
- Progressive result delivery for long operations
### Transport Selection Criteria
| Criterion | Stdio | HTTP | SSE |
|-----------|-------|------|-----|
| **Deployment** | Local | Remote | Remote |
| **Clients** | Single | Multiple | Multiple |
| **Communication** | Bidirectional | Request-Response | Server-Push |
| **Complexity** | Low | Medium | Medium-High |
| **Real-time** | No | No | Yes |
---
## 7. Tool Development Best Practices
### General Guidelines
1. Tool names should be descriptive and action-oriented
2. Use parameter validation with detailed JSON schemas
3. Include examples in tool descriptions
4. Implement proper error handling and validation
5. Use progress reporting for long operations
6. Keep tool operations focused and atomic
7. Document expected return value structures
8. Implement proper timeouts
9. Consider rate limiting for resource-intensive operations
10. Log tool usage for debugging and monitoring
### Security Considerations for Tools
#### Input Validation
- Validate all parameters against schema
- Sanitize file paths and system commands
- Validate URLs and external identifiers
- Check parameter sizes and ranges
- Prevent command injection
#### Access Control
- Implement authentication where needed
- Use appropriate authorization checks
- Audit tool usage
- Rate limit requests
- Monitor for abuse
#### Error Handling
- Don't expose internal errors to clients
- Log security-relevant errors
- Handle timeouts appropriately
- Clean up resources after errors
- Validate return values
### Tool Annotations
- Provide readOnlyHint and destructiveHint annotations
- Remember annotations are hints, not security guarantees
- Clients should not make security-critical decisions based solely on annotations
---
## 8. Transport Best Practices
### General Transport Guidelines
1. Handle connection lifecycle properly
2. Implement proper error handling
3. Use appropriate timeout values
4. Implement connection state management
5. Clean up resources on disconnection
### Security Best Practices for Transport
- Follow security considerations for DNS rebinding attacks
- Implement proper authentication mechanisms
- Validate message formats
- Handle malformed messages gracefully
### Stdio Transport Specific
- Local MCP servers should NOT log to stdout (interferes with protocol)
- Use stderr for logging messages
- Handle standard I/O streams properly
---
## 9. Testing Requirements
A comprehensive testing strategy should cover:
### Functional Testing
- Verify correct execution with valid/invalid inputs
### Integration Testing
- Test interaction with external systems
### Security Testing
- Validate auth, input sanitization, rate limiting
### Performance Testing
- Check behavior under load, timeouts
### Error Handling
- Ensure proper error reporting and cleanup
---
## 10. OAuth and Security Best Practices
### Authentication and Authorization
MCP servers that connect to external services should implement proper authentication:
**OAuth 2.1 Implementation:**
- Use secure OAuth 2.1 with certificates from recognized authorities
- Validate access tokens before processing requests
- Only accept tokens specifically intended for your server
- Reject tokens without proper audience claims
- Never pass through tokens received from MCP clients
**API Key Management:**
- Store API keys in environment variables, never in code
- Validate keys on server startup
- Provide clear error messages when authentication fails
- Use secure transmission for sensitive credentials
### Input Validation and Security
**Always validate inputs:**
- Sanitize file paths to prevent directory traversal
- Validate URLs and external identifiers
- Check parameter sizes and ranges
- Prevent command injection in system calls
- Use schema validation (Pydantic/Zod) for all inputs
**Error handling security:**
- Don't expose internal errors to clients
- Log security-relevant errors server-side
- Provide helpful but not revealing error messages
- Clean up resources after errors
### Privacy and Data Protection
**Data collection principles:**
- Only collect data strictly necessary for functionality
- Don't collect extraneous conversation data
- Don't collect PII unless explicitly required for the tool's purpose
- Provide clear information about what data is accessed
**Data transmission:**
- Don't send data to servers outside your organization without disclosure
- Use secure transmission (HTTPS) for all network communication
- Validate certificates for external services
---
## 11. Resource Management Best Practices
1. Only suggest necessary resources
2. Use clear, descriptive names for roots
3. Handle resource boundaries properly
4. Respect client control over resources
5. Use model-controlled primitives (tools) for automatic data exposure
---
## 12. Prompt Management Best Practices
- Clients should show users proposed prompts
- Users should be able to modify or reject prompts
- Clients should show users completions
- Users should be able to modify or reject completions
- Consider costs when using sampling
---
## 13. Error Handling Standards
- Use standard JSON-RPC error codes
- Report tool errors within result objects (not protocol-level)
- Provide helpful, specific error messages
- Don't expose internal implementation details
- Clean up resources properly on errors
---
## 14. Documentation Requirements
- Provide clear documentation of all tools and capabilities
- Include working examples (at least 3 per major feature)
- Document security considerations
- Specify required permissions and access levels
- Document rate limits and performance characteristics
---
## 15. Compliance and Monitoring
- Implement logging for debugging and monitoring
- Track tool usage patterns
- Monitor for potential abuse
- Maintain audit trails for security-relevant operations
- Be prepared for ongoing compliance reviews
---
## Summary
These best practices represent the comprehensive guidelines for building secure, efficient, and compliant MCP servers that work well within the ecosystem. Developers should follow these guidelines to ensure their MCP servers meet the standards for inclusion in the MCP directory and provide a safe, reliable experience for users.
----------
# Tools
> Enable LLMs to perform actions through your server
Tools are a powerful primitive in the Model Context Protocol (MCP) that enable servers to expose executable functionality to clients. Through tools, LLMs can interact with external systems, perform computations, and take actions in the real world.
<Note>
Tools are designed to be **model-controlled**, meaning that tools are exposed from servers to clients with the intention of the AI model being able to automatically invoke them (with a human in the loop to grant approval).
</Note>
## Overview
Tools in MCP allow servers to expose executable functions that can be invoked by clients and used by LLMs to perform actions. Key aspects of tools include:
* **Discovery**: Clients can obtain a list of available tools by sending a `tools/list` request
* **Invocation**: Tools are called using the `tools/call` request, where servers perform the requested operation and return results
* **Flexibility**: Tools can range from simple calculations to complex API interactions
Like [resources](/docs/concepts/resources), tools are identified by unique names and can include descriptions to guide their usage. However, unlike resources, tools represent dynamic operations that can modify state or interact with external systems.
## Tool definition structure
Each tool is defined with the following structure:
```typescript
{
name: string; // Unique identifier for the tool
description?: string; // Human-readable description
inputSchema: { // JSON Schema for the tool's parameters
type: "object",
properties: { ... } // Tool-specific parameters
},
annotations?: { // Optional hints about tool behavior
title?: string; // Human-readable title for the tool
readOnlyHint?: boolean; // If true, the tool does not modify its environment
destructiveHint?: boolean; // If true, the tool may perform destructive updates
idempotentHint?: boolean; // If true, repeated calls with same args have no additional effect
openWorldHint?: boolean; // If true, tool interacts with external entities
}
}
```
## Implementing tools
Here's an example of implementing a basic tool in an MCP server:
<Tabs>
<Tab title="TypeScript">
```typescript
const server = new Server({
name: "example-server",
version: "1.0.0"
}, {
capabilities: {
tools: {}
}
});
// Define available tools
server.setRequestHandler(ListToolsRequestSchema, async () => {
return {
tools: [{
name: "calculate_sum",
description: "Add two numbers together",
inputSchema: {
type: "object",
properties: {
a: { type: "number" },
b: { type: "number" }
},
required: ["a", "b"]
}
}]
};
});
// Handle tool execution
server.setRequestHandler(CallToolRequestSchema, async (request) => {
if (request.params.name === "calculate_sum") {
const { a, b } = request.params.arguments;
return {
content: [
{
type: "text",
text: String(a + b)
}
]
};
}
throw new Error("Tool not found");
});
```
</Tab>
<Tab title="Python">
```python
app = Server("example-server")
@app.list_tools()
async def list_tools() -> list[types.Tool]:
return [
types.Tool(
name="calculate_sum",
description="Add two numbers together",
inputSchema={
"type": "object",
"properties": {
"a": {"type": "number"},
"b": {"type": "number"}
},
"required": ["a", "b"]
}
)
]
@app.call_tool()
async def call_tool(
name: str,
arguments: dict
) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]:
if name == "calculate_sum":
a = arguments["a"]
b = arguments["b"]
result = a + b
return [types.TextContent(type="text", text=str(result))]
raise ValueError(f"Tool not found: {name}")
```
</Tab>
</Tabs>
## Example tool patterns
Here are some examples of types of tools that a server could provide:
### System operations
Tools that interact with the local system:
```typescript
{
name: "execute_command",
description: "Run a shell command",
inputSchema: {
type: "object",
properties: {
command: { type: "string" },
args: { type: "array", items: { type: "string" } }
}
}
}
```
### API integrations
Tools that wrap external APIs:
```typescript
{
name: "github_create_issue",
description: "Create a GitHub issue",
inputSchema: {
type: "object",
properties: {
title: { type: "string" },
body: { type: "string" },
labels: { type: "array", items: { type: "string" } }
}
}
}
```
### Data processing
Tools that transform or analyze data:
```typescript
{
name: "analyze_csv",
description: "Analyze a CSV file",
inputSchema: {
type: "object",
properties: {
filepath: { type: "string" },
operations: {
type: "array",
items: {
enum: ["sum", "average", "count"]
}
}
}
}
}
```
## Best practices
When implementing tools:
1. Provide clear, descriptive names and descriptions
2. Use detailed JSON Schema definitions for parameters
3. Include examples in tool descriptions to demonstrate how the model should use them
4. Implement proper error handling and validation
5. Use progress reporting for long operations
6. Keep tool operations focused and atomic
7. Document expected return value structures
8. Implement proper timeouts
9. Consider rate limiting for resource-intensive operations
10. Log tool usage for debugging and monitoring
### Tool name conflicts
MCP client applications and MCP server proxies may encounter tool name conflicts when building their own tool lists. For example, two connected MCP servers `web1` and `web2` may both expose a tool named `search_web`.
Applications may disambiguiate tools with one of the following strategies (among others; not an exhaustive list):
* Concatenating a unique, user-defined server name with the tool name, e.g. `web1___search_web` and `web2___search_web`. This strategy may be preferable when unique server names are already provided by the user in a configuration file.
* Generating a random prefix for the tool name, e.g. `jrwxs___search_web` and `6cq52___search_web`. This strategy may be preferable in server proxies where user-defined unique names are not available.
* Using the server URI as a prefix for the tool name, e.g. `web1.example.com:search_web` and `web2.example.com:search_web`. This strategy may be suitable when working with remote MCP servers.
Note that the server-provided name from the initialization flow is not guaranteed to be unique and is not generally suitable for disambiguation purposes.
## Security considerations
When exposing tools:
### Input validation
* Validate all parameters against the schema
* Sanitize file paths and system commands
* Validate URLs and external identifiers
* Check parameter sizes and ranges
* Prevent command injection
### Access control
* Implement authentication where needed
* Use appropriate authorization checks
* Audit tool usage
* Rate limit requests
* Monitor for abuse
### Error handling
* Don't expose internal errors to clients
* Log security-relevant errors
* Handle timeouts appropriately
* Clean up resources after errors
* Validate return values
## Tool discovery and updates
MCP supports dynamic tool discovery:
1. Clients can list available tools at any time
2. Servers can notify clients when tools change using `notifications/tools/list_changed`
3. Tools can be added or removed during runtime
4. Tool definitions can be updated (though this should be done carefully)
## Error handling
Tool errors should be reported within the result object, not as MCP protocol-level errors. This allows the LLM to see and potentially handle the error. When a tool encounters an error:
1. Set `isError` to `true` in the result
2. Include error details in the `content` array
Here's an example of proper error handling for tools:
<Tabs>
<Tab title="TypeScript">
```typescript
try {
// Tool operation
const result = performOperation();
return {
content: [
{
type: "text",
text: `Operation successful: ${result}`
}
]
};
} catch (error) {
return {
isError: true,
content: [
{
type: "text",
text: `Error: ${error.message}`
}
]
};
}
```
</Tab>
<Tab title="Python">
```python
try:
# Tool operation
result = perform_operation()
return types.CallToolResult(
content=[
types.TextContent(
type="text",
text=f"Operation successful: {result}"
)
]
)
except Exception as error:
return types.CallToolResult(
isError=True,
content=[
types.TextContent(
type="text",
text=f"Error: {str(error)}"
)
]
)
```
</Tab>
</Tabs>
This approach allows the LLM to see that an error occurred and potentially take corrective action or request human intervention.
## Tool annotations
Tool annotations provide additional metadata about a tool's behavior, helping clients understand how to present and manage tools. These annotations are hints that describe the nature and impact of a tool, but should not be relied upon for security decisions.
### Purpose of tool annotations
Tool annotations serve several key purposes:
1. Provide UX-specific information without affecting model context
2. Help clients categorize and present tools appropriately
3. Convey information about a tool's potential side effects
4. Assist in developing intuitive interfaces for tool approval
### Available tool annotations
The MCP specification defines the following annotations for tools:
| Annotation | Type | Default | Description |
| ----------------- | ------- | ------- | ------------------------------------------------------------------------------------------------------------------------------------ |
| `title` | string | - | A human-readable title for the tool, useful for UI display |
| `readOnlyHint` | boolean | false | If true, indicates the tool does not modify its environment |
| `destructiveHint` | boolean | true | If true, the tool may perform destructive updates (only meaningful when `readOnlyHint` is false) |
| `idempotentHint` | boolean | false | If true, calling the tool repeatedly with the same arguments has no additional effect (only meaningful when `readOnlyHint` is false) |
| `openWorldHint` | boolean | true | If true, the tool may interact with an "open world" of external entities |
### Example usage
Here's how to define tools with annotations for different scenarios:
```typescript
// A read-only search tool
{
name: "web_search",
description: "Search the web for information",
inputSchema: {
type: "object",
properties: {
query: { type: "string" }
},
required: ["query"]
},
annotations: {
title: "Web Search",
readOnlyHint: true,
openWorldHint: true
}
}
// A destructive file deletion tool
{
name: "delete_file",
description: "Delete a file from the filesystem",
inputSchema: {
type: "object",
properties: {
path: { type: "string" }
},
required: ["path"]
},
annotations: {
title: "Delete File",
readOnlyHint: false,
destructiveHint: true,
idempotentHint: true,
openWorldHint: false
}
}
// A non-destructive database record creation tool
{
name: "create_record",
description: "Create a new record in the database",
inputSchema: {
type: "object",
properties: {
table: { type: "string" },
data: { type: "object" }
},
required: ["table", "data"]
},
annotations: {
title: "Create Database Record",
readOnlyHint: false,
destructiveHint: false,
idempotentHint: false,
openWorldHint: false
}
}
```
### Integrating annotations in server implementation
<Tabs>
<Tab title="TypeScript">
```typescript
server.setRequestHandler(ListToolsRequestSchema, async () => {
return {
tools: [{
name: "calculate_sum",
description: "Add two numbers together",
inputSchema: {
type: "object",
properties: {
a: { type: "number" },
b: { type: "number" }
},
required: ["a", "b"]
},
annotations: {
title: "Calculate Sum",
readOnlyHint: true,
openWorldHint: false
}
}]
};
});
```
</Tab>
<Tab title="Python">
```python
from mcp.server.fastmcp import FastMCP
mcp = FastMCP("example-server")
@mcp.tool(
annotations={
"title": "Calculate Sum",
"readOnlyHint": True,
"openWorldHint": False
}
)
async def calculate_sum(a: float, b: float) -> str:
"""Add two numbers together.
Args:
a: First number to add
b: Second number to add
"""
result = a + b
return str(result)
```
</Tab>
</Tabs>
### Best practices for tool annotations
1. **Be accurate about side effects**: Clearly indicate whether a tool modifies its environment and whether those modifications are destructive.
2. **Use descriptive titles**: Provide human-friendly titles that clearly describe the tool's purpose.
3. **Indicate idempotency properly**: Mark tools as idempotent only if repeated calls with the same arguments truly have no additional effect.
4. **Set appropriate open/closed world hints**: Indicate whether a tool interacts with a closed system (like a database) or an open system (like the web).
5. **Remember annotations are hints**: All properties in ToolAnnotations are hints and not guaranteed to provide a faithful description of tool behavior. Clients should never make security-critical decisions based solely on annotations.
## Testing tools
A comprehensive testing strategy for MCP tools should cover:
* **Functional testing**: Verify tools execute correctly with valid inputs and handle invalid inputs appropriately
* **Integration testing**: Test tool interaction with external systems using both real and mocked dependencies
* **Security testing**: Validate authentication, authorization, input sanitization, and rate limiting
* **Performance testing**: Check behavior under load, timeout handling, and resource cleanup
* **Error handling**: Ensure tools properly report errors through the MCP protocol and clean up resources

View File

@@ -0,0 +1,916 @@
# Node/TypeScript MCP Server Implementation Guide
## Overview
This document provides Node/TypeScript-specific best practices and examples for implementing MCP servers using the MCP TypeScript SDK. It covers project structure, server setup, tool registration patterns, input validation with Zod, error handling, and complete working examples.
---
## Quick Reference
### Key Imports
```typescript
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";
import { z } from "zod";
import axios, { AxiosError } from "axios";
```
### Server Initialization
```typescript
const server = new McpServer({
name: "service-mcp-server",
version: "1.0.0"
});
```
### Tool Registration Pattern
```typescript
server.registerTool("tool_name", {...config}, async (params) => {
// Implementation
});
```
---
## MCP TypeScript SDK
The official MCP TypeScript SDK provides:
- `McpServer` class for server initialization
- `registerTool` method for tool registration
- Zod schema integration for runtime input validation
- Type-safe tool handler implementations
See the MCP SDK documentation in the references for complete details.
## Server Naming Convention
Node/TypeScript MCP servers must follow this naming pattern:
- **Format**: `{service}-mcp-server` (lowercase with hyphens)
- **Examples**: `github-mcp-server`, `jira-mcp-server`, `stripe-mcp-server`
The name should be:
- General (not tied to specific features)
- Descriptive of the service/API being integrated
- Easy to infer from the task description
- Without version numbers or dates
## Project Structure
Create the following structure for Node/TypeScript MCP servers:
```
{service}-mcp-server/
├── package.json
├── tsconfig.json
├── README.md
├── src/
│ ├── index.ts # Main entry point with McpServer initialization
│ ├── types.ts # TypeScript type definitions and interfaces
│ ├── tools/ # Tool implementations (one file per domain)
│ ├── services/ # API clients and shared utilities
│ ├── schemas/ # Zod validation schemas
│ └── constants.ts # Shared constants (API_URL, CHARACTER_LIMIT, etc.)
└── dist/ # Built JavaScript files (entry point: dist/index.js)
```
## Tool Implementation
### Tool Naming
Use snake_case for tool names (e.g., "search_users", "create_project", "get_channel_info") with clear, action-oriented names.
**Avoid Naming Conflicts**: Include the service context to prevent overlaps:
- Use "slack_send_message" instead of just "send_message"
- Use "github_create_issue" instead of just "create_issue"
- Use "asana_list_tasks" instead of just "list_tasks"
### Tool Structure
Tools are registered using the `registerTool` method with the following requirements:
- Use Zod schemas for runtime input validation and type safety
- The `description` field must be explicitly provided - JSDoc comments are NOT automatically extracted
- Explicitly provide `title`, `description`, `inputSchema`, and `annotations`
- The `inputSchema` must be a Zod schema object (not a JSON schema)
- Type all parameters and return values explicitly
```typescript
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import { z } from "zod";
const server = new McpServer({
name: "example-mcp",
version: "1.0.0"
});
// Zod schema for input validation
const UserSearchInputSchema = z.object({
query: z.string()
.min(2, "Query must be at least 2 characters")
.max(200, "Query must not exceed 200 characters")
.describe("Search string to match against names/emails"),
limit: z.number()
.int()
.min(1)
.max(100)
.default(20)
.describe("Maximum results to return"),
offset: z.number()
.int()
.min(0)
.default(0)
.describe("Number of results to skip for pagination"),
response_format: z.nativeEnum(ResponseFormat)
.default(ResponseFormat.MARKDOWN)
.describe("Output format: 'markdown' for human-readable or 'json' for machine-readable")
}).strict();
// Type definition from Zod schema
type UserSearchInput = z.infer<typeof UserSearchInputSchema>;
server.registerTool(
"example_search_users",
{
title: "Search Example Users",
description: `Search for users in the Example system by name, email, or team.
This tool searches across all user profiles in the Example platform, supporting partial matches and various search filters. It does NOT create or modify users, only searches existing ones.
Args:
- query (string): Search string to match against names/emails
- limit (number): Maximum results to return, between 1-100 (default: 20)
- offset (number): Number of results to skip for pagination (default: 0)
- response_format ('markdown' | 'json'): Output format (default: 'markdown')
Returns:
For JSON format: Structured data with schema:
{
"total": number, // Total number of matches found
"count": number, // Number of results in this response
"offset": number, // Current pagination offset
"users": [
{
"id": string, // User ID (e.g., "U123456789")
"name": string, // Full name (e.g., "John Doe")
"email": string, // Email address
"team": string, // Team name (optional)
"active": boolean // Whether user is active
}
],
"has_more": boolean, // Whether more results are available
"next_offset": number // Offset for next page (if has_more is true)
}
Examples:
- Use when: "Find all marketing team members" -> params with query="team:marketing"
- Use when: "Search for John's account" -> params with query="john"
- Don't use when: You need to create a user (use example_create_user instead)
Error Handling:
- Returns "Error: Rate limit exceeded" if too many requests (429 status)
- Returns "No users found matching '<query>'" if search returns empty`,
inputSchema: UserSearchInputSchema,
annotations: {
readOnlyHint: true,
destructiveHint: false,
idempotentHint: true,
openWorldHint: true
}
},
async (params: UserSearchInput) => {
try {
// Input validation is handled by Zod schema
// Make API request using validated parameters
const data = await makeApiRequest<any>(
"users/search",
"GET",
undefined,
{
q: params.query,
limit: params.limit,
offset: params.offset
}
);
const users = data.users || [];
const total = data.total || 0;
if (!users.length) {
return {
content: [{
type: "text",
text: `No users found matching '${params.query}'`
}]
};
}
// Format response based on requested format
let result: string;
if (params.response_format === ResponseFormat.MARKDOWN) {
// Human-readable markdown format
const lines: string[] = [`# User Search Results: '${params.query}'`, ""];
lines.push(`Found ${total} users (showing ${users.length})`);
lines.push("");
for (const user of users) {
lines.push(`## ${user.name} (${user.id})`);
lines.push(`- **Email**: ${user.email}`);
if (user.team) {
lines.push(`- **Team**: ${user.team}`);
}
lines.push("");
}
result = lines.join("\n");
} else {
// Machine-readable JSON format
const response: any = {
total,
count: users.length,
offset: params.offset,
users: users.map((user: any) => ({
id: user.id,
name: user.name,
email: user.email,
...(user.team ? { team: user.team } : {}),
active: user.active ?? true
}))
};
// Add pagination info if there are more results
if (total > params.offset + users.length) {
response.has_more = true;
response.next_offset = params.offset + users.length;
}
result = JSON.stringify(response, null, 2);
}
return {
content: [{
type: "text",
text: result
}]
};
} catch (error) {
return {
content: [{
type: "text",
text: handleApiError(error)
}]
};
}
}
);
```
## Zod Schemas for Input Validation
Zod provides runtime type validation:
```typescript
import { z } from "zod";
// Basic schema with validation
const CreateUserSchema = z.object({
name: z.string()
.min(1, "Name is required")
.max(100, "Name must not exceed 100 characters"),
email: z.string()
.email("Invalid email format"),
age: z.number()
.int("Age must be a whole number")
.min(0, "Age cannot be negative")
.max(150, "Age cannot be greater than 150")
}).strict(); // Use .strict() to forbid extra fields
// Enums
enum ResponseFormat {
MARKDOWN = "markdown",
JSON = "json"
}
const SearchSchema = z.object({
response_format: z.nativeEnum(ResponseFormat)
.default(ResponseFormat.MARKDOWN)
.describe("Output format")
});
// Optional fields with defaults
const PaginationSchema = z.object({
limit: z.number()
.int()
.min(1)
.max(100)
.default(20)
.describe("Maximum results to return"),
offset: z.number()
.int()
.min(0)
.default(0)
.describe("Number of results to skip")
});
```
## Response Format Options
Support multiple output formats for flexibility:
```typescript
enum ResponseFormat {
MARKDOWN = "markdown",
JSON = "json"
}
const inputSchema = z.object({
query: z.string(),
response_format: z.nativeEnum(ResponseFormat)
.default(ResponseFormat.MARKDOWN)
.describe("Output format: 'markdown' for human-readable or 'json' for machine-readable")
});
```
**Markdown format**:
- Use headers, lists, and formatting for clarity
- Convert timestamps to human-readable format
- Show display names with IDs in parentheses
- Omit verbose metadata
- Group related information logically
**JSON format**:
- Return complete, structured data suitable for programmatic processing
- Include all available fields and metadata
- Use consistent field names and types
## Pagination Implementation
For tools that list resources:
```typescript
const ListSchema = z.object({
limit: z.number().int().min(1).max(100).default(20),
offset: z.number().int().min(0).default(0)
});
async function listItems(params: z.infer<typeof ListSchema>) {
const data = await apiRequest(params.limit, params.offset);
const response = {
total: data.total,
count: data.items.length,
offset: params.offset,
items: data.items,
has_more: data.total > params.offset + data.items.length,
next_offset: data.total > params.offset + data.items.length
? params.offset + data.items.length
: undefined
};
return JSON.stringify(response, null, 2);
}
```
## Character Limits and Truncation
Add a CHARACTER_LIMIT constant to prevent overwhelming responses:
```typescript
// At module level in constants.ts
export const CHARACTER_LIMIT = 25000; // Maximum response size in characters
async function searchTool(params: SearchInput) {
let result = generateResponse(data);
// Check character limit and truncate if needed
if (result.length > CHARACTER_LIMIT) {
const truncatedData = data.slice(0, Math.max(1, data.length / 2));
response.data = truncatedData;
response.truncated = true;
response.truncation_message =
`Response truncated from ${data.length} to ${truncatedData.length} items. ` +
`Use 'offset' parameter or add filters to see more results.`;
result = JSON.stringify(response, null, 2);
}
return result;
}
```
## Error Handling
Provide clear, actionable error messages:
```typescript
import axios, { AxiosError } from "axios";
function handleApiError(error: unknown): string {
if (error instanceof AxiosError) {
if (error.response) {
switch (error.response.status) {
case 404:
return "Error: Resource not found. Please check the ID is correct.";
case 403:
return "Error: Permission denied. You don't have access to this resource.";
case 429:
return "Error: Rate limit exceeded. Please wait before making more requests.";
default:
return `Error: API request failed with status ${error.response.status}`;
}
} else if (error.code === "ECONNABORTED") {
return "Error: Request timed out. Please try again.";
}
}
return `Error: Unexpected error occurred: ${error instanceof Error ? error.message : String(error)}`;
}
```
## Shared Utilities
Extract common functionality into reusable functions:
```typescript
// Shared API request function
async function makeApiRequest<T>(
endpoint: string,
method: "GET" | "POST" | "PUT" | "DELETE" = "GET",
data?: any,
params?: any
): Promise<T> {
try {
const response = await axios({
method,
url: `${API_BASE_URL}/${endpoint}`,
data,
params,
timeout: 30000,
headers: {
"Content-Type": "application/json",
"Accept": "application/json"
}
});
return response.data;
} catch (error) {
throw error;
}
}
```
## Async/Await Best Practices
Always use async/await for network requests and I/O operations:
```typescript
// Good: Async network request
async function fetchData(resourceId: string): Promise<ResourceData> {
const response = await axios.get(`${API_URL}/resource/${resourceId}`);
return response.data;
}
// Bad: Promise chains
function fetchData(resourceId: string): Promise<ResourceData> {
return axios.get(`${API_URL}/resource/${resourceId}`)
.then(response => response.data); // Harder to read and maintain
}
```
## TypeScript Best Practices
1. **Use Strict TypeScript**: Enable strict mode in tsconfig.json
2. **Define Interfaces**: Create clear interface definitions for all data structures
3. **Avoid `any`**: Use proper types or `unknown` instead of `any`
4. **Zod for Runtime Validation**: Use Zod schemas to validate external data
5. **Type Guards**: Create type guard functions for complex type checking
6. **Error Handling**: Always use try-catch with proper error type checking
7. **Null Safety**: Use optional chaining (`?.`) and nullish coalescing (`??`)
```typescript
// Good: Type-safe with Zod and interfaces
interface UserResponse {
id: string;
name: string;
email: string;
team?: string;
active: boolean;
}
const UserSchema = z.object({
id: z.string(),
name: z.string(),
email: z.string().email(),
team: z.string().optional(),
active: z.boolean()
});
type User = z.infer<typeof UserSchema>;
async function getUser(id: string): Promise<User> {
const data = await apiCall(`/users/${id}`);
return UserSchema.parse(data); // Runtime validation
}
// Bad: Using any
async function getUser(id: string): Promise<any> {
return await apiCall(`/users/${id}`); // No type safety
}
```
## Package Configuration
### package.json
```json
{
"name": "{service}-mcp-server",
"version": "1.0.0",
"description": "MCP server for {Service} API integration",
"type": "module",
"main": "dist/index.js",
"scripts": {
"start": "node dist/index.js",
"dev": "tsx watch src/index.ts",
"build": "tsc",
"clean": "rm -rf dist"
},
"engines": {
"node": ">=18"
},
"dependencies": {
"@modelcontextprotocol/sdk": "^1.6.1",
"axios": "^1.7.9",
"zod": "^3.23.8"
},
"devDependencies": {
"@types/node": "^22.10.0",
"tsx": "^4.19.2",
"typescript": "^5.7.2"
}
}
```
### tsconfig.json
```json
{
"compilerOptions": {
"target": "ES2022",
"module": "Node16",
"moduleResolution": "Node16",
"lib": ["ES2022"],
"outDir": "./dist",
"rootDir": "./src",
"strict": true,
"esModuleInterop": true,
"skipLibCheck": true,
"forceConsistentCasingInFileNames": true,
"declaration": true,
"declarationMap": true,
"sourceMap": true,
"allowSyntheticDefaultImports": true
},
"include": ["src/**/*"],
"exclude": ["node_modules", "dist"]
}
```
## Complete Example
```typescript
#!/usr/bin/env node
/**
* MCP Server for Example Service.
*
* This server provides tools to interact with Example API, including user search,
* project management, and data export capabilities.
*/
import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js";
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";
import { z } from "zod";
import axios, { AxiosError } from "axios";
// Constants
const API_BASE_URL = "https://api.example.com/v1";
const CHARACTER_LIMIT = 25000;
// Enums
enum ResponseFormat {
MARKDOWN = "markdown",
JSON = "json"
}
// Zod schemas
const UserSearchInputSchema = z.object({
query: z.string()
.min(2, "Query must be at least 2 characters")
.max(200, "Query must not exceed 200 characters")
.describe("Search string to match against names/emails"),
limit: z.number()
.int()
.min(1)
.max(100)
.default(20)
.describe("Maximum results to return"),
offset: z.number()
.int()
.min(0)
.default(0)
.describe("Number of results to skip for pagination"),
response_format: z.nativeEnum(ResponseFormat)
.default(ResponseFormat.MARKDOWN)
.describe("Output format: 'markdown' for human-readable or 'json' for machine-readable")
}).strict();
type UserSearchInput = z.infer<typeof UserSearchInputSchema>;
// Shared utility functions
async function makeApiRequest<T>(
endpoint: string,
method: "GET" | "POST" | "PUT" | "DELETE" = "GET",
data?: any,
params?: any
): Promise<T> {
try {
const response = await axios({
method,
url: `${API_BASE_URL}/${endpoint}`,
data,
params,
timeout: 30000,
headers: {
"Content-Type": "application/json",
"Accept": "application/json"
}
});
return response.data;
} catch (error) {
throw error;
}
}
function handleApiError(error: unknown): string {
if (error instanceof AxiosError) {
if (error.response) {
switch (error.response.status) {
case 404:
return "Error: Resource not found. Please check the ID is correct.";
case 403:
return "Error: Permission denied. You don't have access to this resource.";
case 429:
return "Error: Rate limit exceeded. Please wait before making more requests.";
default:
return `Error: API request failed with status ${error.response.status}`;
}
} else if (error.code === "ECONNABORTED") {
return "Error: Request timed out. Please try again.";
}
}
return `Error: Unexpected error occurred: ${error instanceof Error ? error.message : String(error)}`;
}
// Create MCP server instance
const server = new McpServer({
name: "example-mcp",
version: "1.0.0"
});
// Register tools
server.registerTool(
"example_search_users",
{
title: "Search Example Users",
description: `[Full description as shown above]`,
inputSchema: UserSearchInputSchema,
annotations: {
readOnlyHint: true,
destructiveHint: false,
idempotentHint: true,
openWorldHint: true
}
},
async (params: UserSearchInput) => {
// Implementation as shown above
}
);
// Main function
async function main() {
// Verify environment variables if needed
if (!process.env.EXAMPLE_API_KEY) {
console.error("ERROR: EXAMPLE_API_KEY environment variable is required");
process.exit(1);
}
// Create transport
const transport = new StdioServerTransport();
// Connect server to transport
await server.connect(transport);
console.error("Example MCP server running via stdio");
}
// Run the server
main().catch((error) => {
console.error("Server error:", error);
process.exit(1);
});
```
---
## Advanced MCP Features
### Resource Registration
Expose data as resources for efficient, URI-based access:
```typescript
import { ResourceTemplate } from "@modelcontextprotocol/sdk/types.js";
// Register a resource with URI template
server.registerResource(
{
uri: "file://documents/{name}",
name: "Document Resource",
description: "Access documents by name",
mimeType: "text/plain"
},
async (uri: string) => {
// Extract parameter from URI
const match = uri.match(/^file:\/\/documents\/(.+)$/);
if (!match) {
throw new Error("Invalid URI format");
}
const documentName = match[1];
const content = await loadDocument(documentName);
return {
contents: [{
uri,
mimeType: "text/plain",
text: content
}]
};
}
);
// List available resources dynamically
server.registerResourceList(async () => {
const documents = await getAvailableDocuments();
return {
resources: documents.map(doc => ({
uri: `file://documents/${doc.name}`,
name: doc.name,
mimeType: "text/plain",
description: doc.description
}))
};
});
```
**When to use Resources vs Tools:**
- **Resources**: For data access with simple URI-based parameters
- **Tools**: For complex operations requiring validation and business logic
- **Resources**: When data is relatively static or template-based
- **Tools**: When operations have side effects or complex workflows
### Multiple Transport Options
The TypeScript SDK supports different transport mechanisms:
```typescript
import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js";
import { SSEServerTransport } from "@modelcontextprotocol/sdk/server/sse.js";
// Stdio transport (default - for CLI tools)
const stdioTransport = new StdioServerTransport();
await server.connect(stdioTransport);
// SSE transport (for real-time web updates)
const sseTransport = new SSEServerTransport("/message", response);
await server.connect(sseTransport);
// HTTP transport (for web services)
// Configure based on your HTTP framework integration
```
**Transport selection guide:**
- **Stdio**: Command-line tools, subprocess integration, local development
- **HTTP**: Web services, remote access, multiple simultaneous clients
- **SSE**: Real-time updates, server-push notifications, web dashboards
### Notification Support
Notify clients when server state changes:
```typescript
// Notify when tools list changes
server.notification({
method: "notifications/tools/list_changed"
});
// Notify when resources change
server.notification({
method: "notifications/resources/list_changed"
});
```
Use notifications sparingly - only when server capabilities genuinely change.
---
## Code Best Practices
### Code Composability and Reusability
Your implementation MUST prioritize composability and code reuse:
1. **Extract Common Functionality**:
- Create reusable helper functions for operations used across multiple tools
- Build shared API clients for HTTP requests instead of duplicating code
- Centralize error handling logic in utility functions
- Extract business logic into dedicated functions that can be composed
- Extract shared markdown or JSON field selection & formatting functionality
2. **Avoid Duplication**:
- NEVER copy-paste similar code between tools
- If you find yourself writing similar logic twice, extract it into a function
- Common operations like pagination, filtering, field selection, and formatting should be shared
- Authentication/authorization logic should be centralized
## Building and Running
Always build your TypeScript code before running:
```bash
# Build the project
npm run build
# Run the server
npm start
# Development with auto-reload
npm run dev
```
Always ensure `npm run build` completes successfully before considering the implementation complete.
## Quality Checklist
Before finalizing your Node/TypeScript MCP server implementation, ensure:
### Strategic Design
- [ ] Tools enable complete workflows, not just API endpoint wrappers
- [ ] Tool names reflect natural task subdivisions
- [ ] Response formats optimize for agent context efficiency
- [ ] Human-readable identifiers used where appropriate
- [ ] Error messages guide agents toward correct usage
### Implementation Quality
- [ ] FOCUSED IMPLEMENTATION: Most important and valuable tools implemented
- [ ] All tools registered using `registerTool` with complete configuration
- [ ] All tools include `title`, `description`, `inputSchema`, and `annotations`
- [ ] Annotations correctly set (readOnlyHint, destructiveHint, idempotentHint, openWorldHint)
- [ ] All tools use Zod schemas for runtime input validation with `.strict()` enforcement
- [ ] All Zod schemas have proper constraints and descriptive error messages
- [ ] All tools have comprehensive descriptions with explicit input/output types
- [ ] Descriptions include return value examples and complete schema documentation
- [ ] Error messages are clear, actionable, and educational
### TypeScript Quality
- [ ] TypeScript interfaces are defined for all data structures
- [ ] Strict TypeScript is enabled in tsconfig.json
- [ ] No use of `any` type - use `unknown` or proper types instead
- [ ] All async functions have explicit Promise<T> return types
- [ ] Error handling uses proper type guards (e.g., `axios.isAxiosError`, `z.ZodError`)
### Advanced Features (where applicable)
- [ ] Resources registered for appropriate data endpoints
- [ ] Appropriate transport configured (stdio, HTTP, SSE)
- [ ] Notifications implemented for dynamic server capabilities
- [ ] Type-safe with SDK interfaces
### Project Configuration
- [ ] Package.json includes all necessary dependencies
- [ ] Build script produces working JavaScript in dist/ directory
- [ ] Main entry point is properly configured as dist/index.js
- [ ] Server name follows format: `{service}-mcp-server`
- [ ] tsconfig.json properly configured with strict mode
### Code Quality
- [ ] Pagination is properly implemented where applicable
- [ ] Large responses check CHARACTER_LIMIT constant and truncate with clear messages
- [ ] Filtering options are provided for potentially large result sets
- [ ] All network operations handle timeouts and connection errors gracefully
- [ ] Common functionality is extracted into reusable functions
- [ ] Return types are consistent across similar operations
### Testing and Build
- [ ] `npm run build` completes successfully without errors
- [ ] dist/index.js created and executable
- [ ] Server runs: `node dist/index.js --help`
- [ ] All imports resolve correctly
- [ ] Sample tool calls work as expected

View File

@@ -0,0 +1,752 @@
# Python MCP Server Implementation Guide
## Overview
This document provides Python-specific best practices and examples for implementing MCP servers using the MCP Python SDK. It covers server setup, tool registration patterns, input validation with Pydantic, error handling, and complete working examples.
---
## Quick Reference
### Key Imports
```python
from mcp.server.fastmcp import FastMCP
from pydantic import BaseModel, Field, field_validator, ConfigDict
from typing import Optional, List, Dict, Any
from enum import Enum
import httpx
```
### Server Initialization
```python
mcp = FastMCP("service_mcp")
```
### Tool Registration Pattern
```python
@mcp.tool(name="tool_name", annotations={...})
async def tool_function(params: InputModel) -> str:
# Implementation
pass
```
---
## MCP Python SDK and FastMCP
The official MCP Python SDK provides FastMCP, a high-level framework for building MCP servers. It provides:
- Automatic description and inputSchema generation from function signatures and docstrings
- Pydantic model integration for input validation
- Decorator-based tool registration with `@mcp.tool`
**For complete SDK documentation, use WebFetch to load:**
`https://raw.githubusercontent.com/modelcontextprotocol/python-sdk/main/README.md`
## Server Naming Convention
Python MCP servers must follow this naming pattern:
- **Format**: `{service}_mcp` (lowercase with underscores)
- **Examples**: `github_mcp`, `jira_mcp`, `stripe_mcp`
The name should be:
- General (not tied to specific features)
- Descriptive of the service/API being integrated
- Easy to infer from the task description
- Without version numbers or dates
## Tool Implementation
### Tool Naming
Use snake_case for tool names (e.g., "search_users", "create_project", "get_channel_info") with clear, action-oriented names.
**Avoid Naming Conflicts**: Include the service context to prevent overlaps:
- Use "slack_send_message" instead of just "send_message"
- Use "github_create_issue" instead of just "create_issue"
- Use "asana_list_tasks" instead of just "list_tasks"
### Tool Structure with FastMCP
Tools are defined using the `@mcp.tool` decorator with Pydantic models for input validation:
```python
from pydantic import BaseModel, Field, ConfigDict
from mcp.server.fastmcp import FastMCP
# Initialize the MCP server
mcp = FastMCP("example_mcp")
# Define Pydantic model for input validation
class ServiceToolInput(BaseModel):
'''Input model for service tool operation.'''
model_config = ConfigDict(
str_strip_whitespace=True, # Auto-strip whitespace from strings
validate_assignment=True, # Validate on assignment
extra='forbid' # Forbid extra fields
)
param1: str = Field(..., description="First parameter description (e.g., 'user123', 'project-abc')", min_length=1, max_length=100)
param2: Optional[int] = Field(default=None, description="Optional integer parameter with constraints", ge=0, le=1000)
tags: Optional[List[str]] = Field(default_factory=list, description="List of tags to apply", max_items=10)
@mcp.tool(
name="service_tool_name",
annotations={
"title": "Human-Readable Tool Title",
"readOnlyHint": True, # Tool does not modify environment
"destructiveHint": False, # Tool does not perform destructive operations
"idempotentHint": True, # Repeated calls have no additional effect
"openWorldHint": False # Tool does not interact with external entities
}
)
async def service_tool_name(params: ServiceToolInput) -> str:
'''Tool description automatically becomes the 'description' field.
This tool performs a specific operation on the service. It validates all inputs
using the ServiceToolInput Pydantic model before processing.
Args:
params (ServiceToolInput): Validated input parameters containing:
- param1 (str): First parameter description
- param2 (Optional[int]): Optional parameter with default
- tags (Optional[List[str]]): List of tags
Returns:
str: JSON-formatted response containing operation results
'''
# Implementation here
pass
```
## Pydantic v2 Key Features
- Use `model_config` instead of nested `Config` class
- Use `field_validator` instead of deprecated `validator`
- Use `model_dump()` instead of deprecated `dict()`
- Validators require `@classmethod` decorator
- Type hints are required for validator methods
```python
from pydantic import BaseModel, Field, field_validator, ConfigDict
class CreateUserInput(BaseModel):
model_config = ConfigDict(
str_strip_whitespace=True,
validate_assignment=True
)
name: str = Field(..., description="User's full name", min_length=1, max_length=100)
email: str = Field(..., description="User's email address", pattern=r'^[\w\.-]+@[\w\.-]+\.\w+$')
age: int = Field(..., description="User's age", ge=0, le=150)
@field_validator('email')
@classmethod
def validate_email(cls, v: str) -> str:
if not v.strip():
raise ValueError("Email cannot be empty")
return v.lower()
```
## Response Format Options
Support multiple output formats for flexibility:
```python
from enum import Enum
class ResponseFormat(str, Enum):
'''Output format for tool responses.'''
MARKDOWN = "markdown"
JSON = "json"
class UserSearchInput(BaseModel):
query: str = Field(..., description="Search query")
response_format: ResponseFormat = Field(
default=ResponseFormat.MARKDOWN,
description="Output format: 'markdown' for human-readable or 'json' for machine-readable"
)
```
**Markdown format**:
- Use headers, lists, and formatting for clarity
- Convert timestamps to human-readable format (e.g., "2024-01-15 10:30:00 UTC" instead of epoch)
- Show display names with IDs in parentheses (e.g., "@john.doe (U123456)")
- Omit verbose metadata (e.g., show only one profile image URL, not all sizes)
- Group related information logically
**JSON format**:
- Return complete, structured data suitable for programmatic processing
- Include all available fields and metadata
- Use consistent field names and types
## Pagination Implementation
For tools that list resources:
```python
class ListInput(BaseModel):
limit: Optional[int] = Field(default=20, description="Maximum results to return", ge=1, le=100)
offset: Optional[int] = Field(default=0, description="Number of results to skip for pagination", ge=0)
async def list_items(params: ListInput) -> str:
# Make API request with pagination
data = await api_request(limit=params.limit, offset=params.offset)
# Return pagination info
response = {
"total": data["total"],
"count": len(data["items"]),
"offset": params.offset,
"items": data["items"],
"has_more": data["total"] > params.offset + len(data["items"]),
"next_offset": params.offset + len(data["items"]) if data["total"] > params.offset + len(data["items"]) else None
}
return json.dumps(response, indent=2)
```
## Character Limits and Truncation
Add a CHARACTER_LIMIT constant to prevent overwhelming responses:
```python
# At module level
CHARACTER_LIMIT = 25000 # Maximum response size in characters
async def search_tool(params: SearchInput) -> str:
result = generate_response(data)
# Check character limit and truncate if needed
if len(result) > CHARACTER_LIMIT:
# Truncate data and add notice
truncated_data = data[:max(1, len(data) // 2)]
response["data"] = truncated_data
response["truncated"] = True
response["truncation_message"] = (
f"Response truncated from {len(data)} to {len(truncated_data)} items. "
f"Use 'offset' parameter or add filters to see more results."
)
result = json.dumps(response, indent=2)
return result
```
## Error Handling
Provide clear, actionable error messages:
```python
def _handle_api_error(e: Exception) -> str:
'''Consistent error formatting across all tools.'''
if isinstance(e, httpx.HTTPStatusError):
if e.response.status_code == 404:
return "Error: Resource not found. Please check the ID is correct."
elif e.response.status_code == 403:
return "Error: Permission denied. You don't have access to this resource."
elif e.response.status_code == 429:
return "Error: Rate limit exceeded. Please wait before making more requests."
return f"Error: API request failed with status {e.response.status_code}"
elif isinstance(e, httpx.TimeoutException):
return "Error: Request timed out. Please try again."
return f"Error: Unexpected error occurred: {type(e).__name__}"
```
## Shared Utilities
Extract common functionality into reusable functions:
```python
# Shared API request function
async def _make_api_request(endpoint: str, method: str = "GET", **kwargs) -> dict:
'''Reusable function for all API calls.'''
async with httpx.AsyncClient() as client:
response = await client.request(
method,
f"{API_BASE_URL}/{endpoint}",
timeout=30.0,
**kwargs
)
response.raise_for_status()
return response.json()
```
## Async/Await Best Practices
Always use async/await for network requests and I/O operations:
```python
# Good: Async network request
async def fetch_data(resource_id: str) -> dict:
async with httpx.AsyncClient() as client:
response = await client.get(f"{API_URL}/resource/{resource_id}")
response.raise_for_status()
return response.json()
# Bad: Synchronous request
def fetch_data(resource_id: str) -> dict:
response = requests.get(f"{API_URL}/resource/{resource_id}") # Blocks
return response.json()
```
## Type Hints
Use type hints throughout:
```python
from typing import Optional, List, Dict, Any
async def get_user(user_id: str) -> Dict[str, Any]:
data = await fetch_user(user_id)
return {"id": data["id"], "name": data["name"]}
```
## Tool Docstrings
Every tool must have comprehensive docstrings with explicit type information:
```python
async def search_users(params: UserSearchInput) -> str:
'''
Search for users in the Example system by name, email, or team.
This tool searches across all user profiles in the Example platform,
supporting partial matches and various search filters. It does NOT
create or modify users, only searches existing ones.
Args:
params (UserSearchInput): Validated input parameters containing:
- query (str): Search string to match against names/emails (e.g., "john", "@example.com", "team:marketing")
- limit (Optional[int]): Maximum results to return, between 1-100 (default: 20)
- offset (Optional[int]): Number of results to skip for pagination (default: 0)
Returns:
str: JSON-formatted string containing search results with the following schema:
Success response:
{
"total": int, # Total number of matches found
"count": int, # Number of results in this response
"offset": int, # Current pagination offset
"users": [
{
"id": str, # User ID (e.g., "U123456789")
"name": str, # Full name (e.g., "John Doe")
"email": str, # Email address (e.g., "john@example.com")
"team": str # Team name (e.g., "Marketing") - optional
}
]
}
Error response:
"Error: <error message>" or "No users found matching '<query>'"
Examples:
- Use when: "Find all marketing team members" -> params with query="team:marketing"
- Use when: "Search for John's account" -> params with query="john"
- Don't use when: You need to create a user (use example_create_user instead)
- Don't use when: You have a user ID and need full details (use example_get_user instead)
Error Handling:
- Input validation errors are handled by Pydantic model
- Returns "Error: Rate limit exceeded" if too many requests (429 status)
- Returns "Error: Invalid API authentication" if API key is invalid (401 status)
- Returns formatted list of results or "No users found matching 'query'"
'''
```
## Complete Example
See below for a complete Python MCP server example:
```python
#!/usr/bin/env python3
'''
MCP Server for Example Service.
This server provides tools to interact with Example API, including user search,
project management, and data export capabilities.
'''
from typing import Optional, List, Dict, Any
from enum import Enum
import httpx
from pydantic import BaseModel, Field, field_validator, ConfigDict
from mcp.server.fastmcp import FastMCP
# Initialize the MCP server
mcp = FastMCP("example_mcp")
# Constants
API_BASE_URL = "https://api.example.com/v1"
CHARACTER_LIMIT = 25000 # Maximum response size in characters
# Enums
class ResponseFormat(str, Enum):
'''Output format for tool responses.'''
MARKDOWN = "markdown"
JSON = "json"
# Pydantic Models for Input Validation
class UserSearchInput(BaseModel):
'''Input model for user search operations.'''
model_config = ConfigDict(
str_strip_whitespace=True,
validate_assignment=True
)
query: str = Field(..., description="Search string to match against names/emails", min_length=2, max_length=200)
limit: Optional[int] = Field(default=20, description="Maximum results to return", ge=1, le=100)
offset: Optional[int] = Field(default=0, description="Number of results to skip for pagination", ge=0)
response_format: ResponseFormat = Field(default=ResponseFormat.MARKDOWN, description="Output format")
@field_validator('query')
@classmethod
def validate_query(cls, v: str) -> str:
if not v.strip():
raise ValueError("Query cannot be empty or whitespace only")
return v.strip()
# Shared utility functions
async def _make_api_request(endpoint: str, method: str = "GET", **kwargs) -> dict:
'''Reusable function for all API calls.'''
async with httpx.AsyncClient() as client:
response = await client.request(
method,
f"{API_BASE_URL}/{endpoint}",
timeout=30.0,
**kwargs
)
response.raise_for_status()
return response.json()
def _handle_api_error(e: Exception) -> str:
'''Consistent error formatting across all tools.'''
if isinstance(e, httpx.HTTPStatusError):
if e.response.status_code == 404:
return "Error: Resource not found. Please check the ID is correct."
elif e.response.status_code == 403:
return "Error: Permission denied. You don't have access to this resource."
elif e.response.status_code == 429:
return "Error: Rate limit exceeded. Please wait before making more requests."
return f"Error: API request failed with status {e.response.status_code}"
elif isinstance(e, httpx.TimeoutException):
return "Error: Request timed out. Please try again."
return f"Error: Unexpected error occurred: {type(e).__name__}"
# Tool definitions
@mcp.tool(
name="example_search_users",
annotations={
"title": "Search Example Users",
"readOnlyHint": True,
"destructiveHint": False,
"idempotentHint": True,
"openWorldHint": True
}
)
async def example_search_users(params: UserSearchInput) -> str:
'''Search for users in the Example system by name, email, or team.
[Full docstring as shown above]
'''
try:
# Make API request using validated parameters
data = await _make_api_request(
"users/search",
params={
"q": params.query,
"limit": params.limit,
"offset": params.offset
}
)
users = data.get("users", [])
total = data.get("total", 0)
if not users:
return f"No users found matching '{params.query}'"
# Format response based on requested format
if params.response_format == ResponseFormat.MARKDOWN:
lines = [f"# User Search Results: '{params.query}'", ""]
lines.append(f"Found {total} users (showing {len(users)})")
lines.append("")
for user in users:
lines.append(f"## {user['name']} ({user['id']})")
lines.append(f"- **Email**: {user['email']}")
if user.get('team'):
lines.append(f"- **Team**: {user['team']}")
lines.append("")
return "\n".join(lines)
else:
# Machine-readable JSON format
import json
response = {
"total": total,
"count": len(users),
"offset": params.offset,
"users": users
}
return json.dumps(response, indent=2)
except Exception as e:
return _handle_api_error(e)
if __name__ == "__main__":
mcp.run()
```
---
## Advanced FastMCP Features
### Context Parameter Injection
FastMCP can automatically inject a `Context` parameter into tools for advanced capabilities like logging, progress reporting, resource reading, and user interaction:
```python
from mcp.server.fastmcp import FastMCP, Context
mcp = FastMCP("example_mcp")
@mcp.tool()
async def advanced_search(query: str, ctx: Context) -> str:
'''Advanced tool with context access for logging and progress.'''
# Report progress for long operations
await ctx.report_progress(0.25, "Starting search...")
# Log information for debugging
await ctx.log_info("Processing query", {"query": query, "timestamp": datetime.now()})
# Perform search
results = await search_api(query)
await ctx.report_progress(0.75, "Formatting results...")
# Access server configuration
server_name = ctx.fastmcp.name
return format_results(results)
@mcp.tool()
async def interactive_tool(resource_id: str, ctx: Context) -> str:
'''Tool that can request additional input from users.'''
# Request sensitive information when needed
api_key = await ctx.elicit(
prompt="Please provide your API key:",
input_type="password"
)
# Use the provided key
return await api_call(resource_id, api_key)
```
**Context capabilities:**
- `ctx.report_progress(progress, message)` - Report progress for long operations
- `ctx.log_info(message, data)` / `ctx.log_error()` / `ctx.log_debug()` - Logging
- `ctx.elicit(prompt, input_type)` - Request input from users
- `ctx.fastmcp.name` - Access server configuration
- `ctx.read_resource(uri)` - Read MCP resources
### Resource Registration
Expose data as resources for efficient, template-based access:
```python
@mcp.resource("file://documents/{name}")
async def get_document(name: str) -> str:
'''Expose documents as MCP resources.
Resources are useful for static or semi-static data that doesn't
require complex parameters. They use URI templates for flexible access.
'''
document_path = f"./docs/{name}"
with open(document_path, "r") as f:
return f.read()
@mcp.resource("config://settings/{key}")
async def get_setting(key: str, ctx: Context) -> str:
'''Expose configuration as resources with context.'''
settings = await load_settings()
return json.dumps(settings.get(key, {}))
```
**When to use Resources vs Tools:**
- **Resources**: For data access with simple parameters (URI templates)
- **Tools**: For complex operations with validation and business logic
### Structured Output Types
FastMCP supports multiple return types beyond strings:
```python
from typing import TypedDict
from dataclasses import dataclass
from pydantic import BaseModel
# TypedDict for structured returns
class UserData(TypedDict):
id: str
name: str
email: str
@mcp.tool()
async def get_user_typed(user_id: str) -> UserData:
'''Returns structured data - FastMCP handles serialization.'''
return {"id": user_id, "name": "John Doe", "email": "john@example.com"}
# Pydantic models for complex validation
class DetailedUser(BaseModel):
id: str
name: str
email: str
created_at: datetime
metadata: Dict[str, Any]
@mcp.tool()
async def get_user_detailed(user_id: str) -> DetailedUser:
'''Returns Pydantic model - automatically generates schema.'''
user = await fetch_user(user_id)
return DetailedUser(**user)
```
### Lifespan Management
Initialize resources that persist across requests:
```python
from contextlib import asynccontextmanager
@asynccontextmanager
async def app_lifespan():
'''Manage resources that live for the server's lifetime.'''
# Initialize connections, load config, etc.
db = await connect_to_database()
config = load_configuration()
# Make available to all tools
yield {"db": db, "config": config}
# Cleanup on shutdown
await db.close()
mcp = FastMCP("example_mcp", lifespan=app_lifespan)
@mcp.tool()
async def query_data(query: str, ctx: Context) -> str:
'''Access lifespan resources through context.'''
db = ctx.request_context.lifespan_state["db"]
results = await db.query(query)
return format_results(results)
```
### Multiple Transport Options
FastMCP supports different transport mechanisms:
```python
# Default: Stdio transport (for CLI tools)
if __name__ == "__main__":
mcp.run()
# HTTP transport (for web services)
if __name__ == "__main__":
mcp.run(transport="streamable_http", port=8000)
# SSE transport (for real-time updates)
if __name__ == "__main__":
mcp.run(transport="sse", port=8000)
```
**Transport selection:**
- **Stdio**: Command-line tools, subprocess integration
- **HTTP**: Web services, remote access, multiple clients
- **SSE**: Real-time updates, push notifications
---
## Code Best Practices
### Code Composability and Reusability
Your implementation MUST prioritize composability and code reuse:
1. **Extract Common Functionality**:
- Create reusable helper functions for operations used across multiple tools
- Build shared API clients for HTTP requests instead of duplicating code
- Centralize error handling logic in utility functions
- Extract business logic into dedicated functions that can be composed
- Extract shared markdown or JSON field selection & formatting functionality
2. **Avoid Duplication**:
- NEVER copy-paste similar code between tools
- If you find yourself writing similar logic twice, extract it into a function
- Common operations like pagination, filtering, field selection, and formatting should be shared
- Authentication/authorization logic should be centralized
### Python-Specific Best Practices
1. **Use Type Hints**: Always include type annotations for function parameters and return values
2. **Pydantic Models**: Define clear Pydantic models for all input validation
3. **Avoid Manual Validation**: Let Pydantic handle input validation with constraints
4. **Proper Imports**: Group imports (standard library, third-party, local)
5. **Error Handling**: Use specific exception types (httpx.HTTPStatusError, not generic Exception)
6. **Async Context Managers**: Use `async with` for resources that need cleanup
7. **Constants**: Define module-level constants in UPPER_CASE
## Quality Checklist
Before finalizing your Python MCP server implementation, ensure:
### Strategic Design
- [ ] Tools enable complete workflows, not just API endpoint wrappers
- [ ] Tool names reflect natural task subdivisions
- [ ] Response formats optimize for agent context efficiency
- [ ] Human-readable identifiers used where appropriate
- [ ] Error messages guide agents toward correct usage
### Implementation Quality
- [ ] FOCUSED IMPLEMENTATION: Most important and valuable tools implemented
- [ ] All tools have descriptive names and documentation
- [ ] Return types are consistent across similar operations
- [ ] Error handling is implemented for all external calls
- [ ] Server name follows format: `{service}_mcp`
- [ ] All network operations use async/await
- [ ] Common functionality is extracted into reusable functions
- [ ] Error messages are clear, actionable, and educational
- [ ] Outputs are properly validated and formatted
### Tool Configuration
- [ ] All tools implement 'name' and 'annotations' in the decorator
- [ ] Annotations correctly set (readOnlyHint, destructiveHint, idempotentHint, openWorldHint)
- [ ] All tools use Pydantic BaseModel for input validation with Field() definitions
- [ ] All Pydantic Fields have explicit types and descriptions with constraints
- [ ] All tools have comprehensive docstrings with explicit input/output types
- [ ] Docstrings include complete schema structure for dict/JSON returns
- [ ] Pydantic models handle input validation (no manual validation needed)
### Advanced Features (where applicable)
- [ ] Context injection used for logging, progress, or elicitation
- [ ] Resources registered for appropriate data endpoints
- [ ] Lifespan management implemented for persistent connections
- [ ] Structured output types used (TypedDict, Pydantic models)
- [ ] Appropriate transport configured (stdio, HTTP, SSE)
### Code Quality
- [ ] File includes proper imports including Pydantic imports
- [ ] Pagination is properly implemented where applicable
- [ ] Large responses check CHARACTER_LIMIT and truncate with clear messages
- [ ] Filtering options are provided for potentially large result sets
- [ ] All async functions are properly defined with `async def`
- [ ] HTTP client usage follows async patterns with proper context managers
- [ ] Type hints are used throughout the code
- [ ] Constants are defined at module level in UPPER_CASE
### Testing
- [ ] Server runs successfully: `python your_server.py --help`
- [ ] All imports resolve correctly
- [ ] Sample tool calls work as expected
- [ ] Error scenarios handled gracefully

151
scripts/connections.py Normal file
View File

@@ -0,0 +1,151 @@
"""Lightweight connection handling for MCP servers."""
from abc import ABC, abstractmethod
from contextlib import AsyncExitStack
from typing import Any
from mcp import ClientSession, StdioServerParameters
from mcp.client.sse import sse_client
from mcp.client.stdio import stdio_client
from mcp.client.streamable_http import streamablehttp_client
class MCPConnection(ABC):
"""Base class for MCP server connections."""
def __init__(self):
self.session = None
self._stack = None
@abstractmethod
def _create_context(self):
"""Create the connection context based on connection type."""
async def __aenter__(self):
"""Initialize MCP server connection."""
self._stack = AsyncExitStack()
await self._stack.__aenter__()
try:
ctx = self._create_context()
result = await self._stack.enter_async_context(ctx)
if len(result) == 2:
read, write = result
elif len(result) == 3:
read, write, _ = result
else:
raise ValueError(f"Unexpected context result: {result}")
session_ctx = ClientSession(read, write)
self.session = await self._stack.enter_async_context(session_ctx)
await self.session.initialize()
return self
except BaseException:
await self._stack.__aexit__(None, None, None)
raise
async def __aexit__(self, exc_type, exc_val, exc_tb):
"""Clean up MCP server connection resources."""
if self._stack:
await self._stack.__aexit__(exc_type, exc_val, exc_tb)
self.session = None
self._stack = None
async def list_tools(self) -> list[dict[str, Any]]:
"""Retrieve available tools from the MCP server."""
response = await self.session.list_tools()
return [
{
"name": tool.name,
"description": tool.description,
"input_schema": tool.inputSchema,
}
for tool in response.tools
]
async def call_tool(self, tool_name: str, arguments: dict[str, Any]) -> Any:
"""Call a tool on the MCP server with provided arguments."""
result = await self.session.call_tool(tool_name, arguments=arguments)
return result.content
class MCPConnectionStdio(MCPConnection):
"""MCP connection using standard input/output."""
def __init__(self, command: str, args: list[str] = None, env: dict[str, str] = None):
super().__init__()
self.command = command
self.args = args or []
self.env = env
def _create_context(self):
return stdio_client(
StdioServerParameters(command=self.command, args=self.args, env=self.env)
)
class MCPConnectionSSE(MCPConnection):
"""MCP connection using Server-Sent Events."""
def __init__(self, url: str, headers: dict[str, str] = None):
super().__init__()
self.url = url
self.headers = headers or {}
def _create_context(self):
return sse_client(url=self.url, headers=self.headers)
class MCPConnectionHTTP(MCPConnection):
"""MCP connection using Streamable HTTP."""
def __init__(self, url: str, headers: dict[str, str] = None):
super().__init__()
self.url = url
self.headers = headers or {}
def _create_context(self):
return streamablehttp_client(url=self.url, headers=self.headers)
def create_connection(
transport: str,
command: str = None,
args: list[str] = None,
env: dict[str, str] = None,
url: str = None,
headers: dict[str, str] = None,
) -> MCPConnection:
"""Factory function to create the appropriate MCP connection.
Args:
transport: Connection type ("stdio", "sse", or "http")
command: Command to run (stdio only)
args: Command arguments (stdio only)
env: Environment variables (stdio only)
url: Server URL (sse and http only)
headers: HTTP headers (sse and http only)
Returns:
MCPConnection instance
"""
transport = transport.lower()
if transport == "stdio":
if not command:
raise ValueError("Command is required for stdio transport")
return MCPConnectionStdio(command=command, args=args, env=env)
elif transport == "sse":
if not url:
raise ValueError("URL is required for sse transport")
return MCPConnectionSSE(url=url, headers=headers)
elif transport in ["http", "streamable_http", "streamable-http"]:
if not url:
raise ValueError("URL is required for http transport")
return MCPConnectionHTTP(url=url, headers=headers)
else:
raise ValueError(f"Unsupported transport type: {transport}. Use 'stdio', 'sse', or 'http'")

373
scripts/evaluation.py Normal file
View File

@@ -0,0 +1,373 @@
"""MCP Server Evaluation Harness
This script evaluates MCP servers by running test questions against them using Claude.
"""
import argparse
import asyncio
import json
import re
import sys
import time
import traceback
import xml.etree.ElementTree as ET
from pathlib import Path
from typing import Any
from anthropic import Anthropic
from connections import create_connection
EVALUATION_PROMPT = """You are an AI assistant with access to tools.
When given a task, you MUST:
1. Use the available tools to complete the task
2. Provide summary of each step in your approach, wrapped in <summary> tags
3. Provide feedback on the tools provided, wrapped in <feedback> tags
4. Provide your final response, wrapped in <response> tags
Summary Requirements:
- In your <summary> tags, you must explain:
- The steps you took to complete the task
- Which tools you used, in what order, and why
- The inputs you provided to each tool
- The outputs you received from each tool
- A summary for how you arrived at the response
Feedback Requirements:
- In your <feedback> tags, provide constructive feedback on the tools:
- Comment on tool names: Are they clear and descriptive?
- Comment on input parameters: Are they well-documented? Are required vs optional parameters clear?
- Comment on descriptions: Do they accurately describe what the tool does?
- Comment on any errors encountered during tool usage: Did the tool fail to execute? Did the tool return too many tokens?
- Identify specific areas for improvement and explain WHY they would help
- Be specific and actionable in your suggestions
Response Requirements:
- Your response should be concise and directly address what was asked
- Always wrap your final response in <response> tags
- If you cannot solve the task return <response>NOT_FOUND</response>
- For numeric responses, provide just the number
- For IDs, provide just the ID
- For names or text, provide the exact text requested
- Your response should go last"""
def parse_evaluation_file(file_path: Path) -> list[dict[str, Any]]:
"""Parse XML evaluation file with qa_pair elements."""
try:
tree = ET.parse(file_path)
root = tree.getroot()
evaluations = []
for qa_pair in root.findall(".//qa_pair"):
question_elem = qa_pair.find("question")
answer_elem = qa_pair.find("answer")
if question_elem is not None and answer_elem is not None:
evaluations.append({
"question": (question_elem.text or "").strip(),
"answer": (answer_elem.text or "").strip(),
})
return evaluations
except Exception as e:
print(f"Error parsing evaluation file {file_path}: {e}")
return []
def extract_xml_content(text: str, tag: str) -> str | None:
"""Extract content from XML tags."""
pattern = rf"<{tag}>(.*?)</{tag}>"
matches = re.findall(pattern, text, re.DOTALL)
return matches[-1].strip() if matches else None
async def agent_loop(
client: Anthropic,
model: str,
question: str,
tools: list[dict[str, Any]],
connection: Any,
) -> tuple[str, dict[str, Any]]:
"""Run the agent loop with MCP tools."""
messages = [{"role": "user", "content": question}]
response = await asyncio.to_thread(
client.messages.create,
model=model,
max_tokens=4096,
system=EVALUATION_PROMPT,
messages=messages,
tools=tools,
)
messages.append({"role": "assistant", "content": response.content})
tool_metrics = {}
while response.stop_reason == "tool_use":
tool_use = next(block for block in response.content if block.type == "tool_use")
tool_name = tool_use.name
tool_input = tool_use.input
tool_start_ts = time.time()
try:
tool_result = await connection.call_tool(tool_name, tool_input)
tool_response = json.dumps(tool_result) if isinstance(tool_result, (dict, list)) else str(tool_result)
except Exception as e:
tool_response = f"Error executing tool {tool_name}: {str(e)}\n"
tool_response += traceback.format_exc()
tool_duration = time.time() - tool_start_ts
if tool_name not in tool_metrics:
tool_metrics[tool_name] = {"count": 0, "durations": []}
tool_metrics[tool_name]["count"] += 1
tool_metrics[tool_name]["durations"].append(tool_duration)
messages.append({
"role": "user",
"content": [{
"type": "tool_result",
"tool_use_id": tool_use.id,
"content": tool_response,
}]
})
response = await asyncio.to_thread(
client.messages.create,
model=model,
max_tokens=4096,
system=EVALUATION_PROMPT,
messages=messages,
tools=tools,
)
messages.append({"role": "assistant", "content": response.content})
response_text = next(
(block.text for block in response.content if hasattr(block, "text")),
None,
)
return response_text, tool_metrics
async def evaluate_single_task(
client: Anthropic,
model: str,
qa_pair: dict[str, Any],
tools: list[dict[str, Any]],
connection: Any,
task_index: int,
) -> dict[str, Any]:
"""Evaluate a single QA pair with the given tools."""
start_time = time.time()
print(f"Task {task_index + 1}: Running task with question: {qa_pair['question']}")
response, tool_metrics = await agent_loop(client, model, qa_pair["question"], tools, connection)
response_value = extract_xml_content(response, "response")
summary = extract_xml_content(response, "summary")
feedback = extract_xml_content(response, "feedback")
duration_seconds = time.time() - start_time
return {
"question": qa_pair["question"],
"expected": qa_pair["answer"],
"actual": response_value,
"score": int(response_value == qa_pair["answer"]) if response_value else 0,
"total_duration": duration_seconds,
"tool_calls": tool_metrics,
"num_tool_calls": sum(len(metrics["durations"]) for metrics in tool_metrics.values()),
"summary": summary,
"feedback": feedback,
}
REPORT_HEADER = """
# Evaluation Report
## Summary
- **Accuracy**: {correct}/{total} ({accuracy:.1f}%)
- **Average Task Duration**: {average_duration_s:.2f}s
- **Average Tool Calls per Task**: {average_tool_calls:.2f}
- **Total Tool Calls**: {total_tool_calls}
---
"""
TASK_TEMPLATE = """
### Task {task_num}
**Question**: {question}
**Ground Truth Answer**: `{expected_answer}`
**Actual Answer**: `{actual_answer}`
**Correct**: {correct_indicator}
**Duration**: {total_duration:.2f}s
**Tool Calls**: {tool_calls}
**Summary**
{summary}
**Feedback**
{feedback}
---
"""
async def run_evaluation(
eval_path: Path,
connection: Any,
model: str = "claude-3-7-sonnet-20250219",
) -> str:
"""Run evaluation with MCP server tools."""
print("🚀 Starting Evaluation")
client = Anthropic()
tools = await connection.list_tools()
print(f"📋 Loaded {len(tools)} tools from MCP server")
qa_pairs = parse_evaluation_file(eval_path)
print(f"📋 Loaded {len(qa_pairs)} evaluation tasks")
results = []
for i, qa_pair in enumerate(qa_pairs):
print(f"Processing task {i + 1}/{len(qa_pairs)}")
result = await evaluate_single_task(client, model, qa_pair, tools, connection, i)
results.append(result)
correct = sum(r["score"] for r in results)
accuracy = (correct / len(results)) * 100 if results else 0
average_duration_s = sum(r["total_duration"] for r in results) / len(results) if results else 0
average_tool_calls = sum(r["num_tool_calls"] for r in results) / len(results) if results else 0
total_tool_calls = sum(r["num_tool_calls"] for r in results)
report = REPORT_HEADER.format(
correct=correct,
total=len(results),
accuracy=accuracy,
average_duration_s=average_duration_s,
average_tool_calls=average_tool_calls,
total_tool_calls=total_tool_calls,
)
report += "".join([
TASK_TEMPLATE.format(
task_num=i + 1,
question=qa_pair["question"],
expected_answer=qa_pair["answer"],
actual_answer=result["actual"] or "N/A",
correct_indicator="" if result["score"] else "",
total_duration=result["total_duration"],
tool_calls=json.dumps(result["tool_calls"], indent=2),
summary=result["summary"] or "N/A",
feedback=result["feedback"] or "N/A",
)
for i, (qa_pair, result) in enumerate(zip(qa_pairs, results))
])
return report
def parse_headers(header_list: list[str]) -> dict[str, str]:
"""Parse header strings in format 'Key: Value' into a dictionary."""
headers = {}
if not header_list:
return headers
for header in header_list:
if ":" in header:
key, value = header.split(":", 1)
headers[key.strip()] = value.strip()
else:
print(f"Warning: Ignoring malformed header: {header}")
return headers
def parse_env_vars(env_list: list[str]) -> dict[str, str]:
"""Parse environment variable strings in format 'KEY=VALUE' into a dictionary."""
env = {}
if not env_list:
return env
for env_var in env_list:
if "=" in env_var:
key, value = env_var.split("=", 1)
env[key.strip()] = value.strip()
else:
print(f"Warning: Ignoring malformed environment variable: {env_var}")
return env
async def main():
parser = argparse.ArgumentParser(
description="Evaluate MCP servers using test questions",
formatter_class=argparse.RawDescriptionHelpFormatter,
epilog="""
Examples:
# Evaluate a local stdio MCP server
python evaluation.py -t stdio -c python -a my_server.py eval.xml
# Evaluate an SSE MCP server
python evaluation.py -t sse -u https://example.com/mcp -H "Authorization: Bearer token" eval.xml
# Evaluate an HTTP MCP server with custom model
python evaluation.py -t http -u https://example.com/mcp -m claude-3-5-sonnet-20241022 eval.xml
""",
)
parser.add_argument("eval_file", type=Path, help="Path to evaluation XML file")
parser.add_argument("-t", "--transport", choices=["stdio", "sse", "http"], default="stdio", help="Transport type (default: stdio)")
parser.add_argument("-m", "--model", default="claude-3-7-sonnet-20250219", help="Claude model to use (default: claude-3-7-sonnet-20250219)")
stdio_group = parser.add_argument_group("stdio options")
stdio_group.add_argument("-c", "--command", help="Command to run MCP server (stdio only)")
stdio_group.add_argument("-a", "--args", nargs="+", help="Arguments for the command (stdio only)")
stdio_group.add_argument("-e", "--env", nargs="+", help="Environment variables in KEY=VALUE format (stdio only)")
remote_group = parser.add_argument_group("sse/http options")
remote_group.add_argument("-u", "--url", help="MCP server URL (sse/http only)")
remote_group.add_argument("-H", "--header", nargs="+", dest="headers", help="HTTP headers in 'Key: Value' format (sse/http only)")
parser.add_argument("-o", "--output", type=Path, help="Output file for evaluation report (default: stdout)")
args = parser.parse_args()
if not args.eval_file.exists():
print(f"Error: Evaluation file not found: {args.eval_file}")
sys.exit(1)
headers = parse_headers(args.headers) if args.headers else None
env_vars = parse_env_vars(args.env) if args.env else None
try:
connection = create_connection(
transport=args.transport,
command=args.command,
args=args.args,
env=env_vars,
url=args.url,
headers=headers,
)
except ValueError as e:
print(f"Error: {e}")
sys.exit(1)
print(f"🔗 Connecting to MCP server via {args.transport}...")
async with connection:
print("✅ Connected successfully")
report = await run_evaluation(args.eval_file, connection, args.model)
if args.output:
args.output.write_text(report)
print(f"\n✅ Report saved to {args.output}")
else:
print("\n" + report)
if __name__ == "__main__":
asyncio.run(main())

View File

@@ -0,0 +1,22 @@
<evaluation>
<qa_pair>
<question>Calculate the compound interest on $10,000 invested at 5% annual interest rate, compounded monthly for 3 years. What is the final amount in dollars (rounded to 2 decimal places)?</question>
<answer>11614.72</answer>
</qa_pair>
<qa_pair>
<question>A projectile is launched at a 45-degree angle with an initial velocity of 50 m/s. Calculate the total distance (in meters) it has traveled from the launch point after 2 seconds, assuming g=9.8 m/s². Round to 2 decimal places.</question>
<answer>87.25</answer>
</qa_pair>
<qa_pair>
<question>A sphere has a volume of 500 cubic meters. Calculate its surface area in square meters. Round to 2 decimal places.</question>
<answer>304.65</answer>
</qa_pair>
<qa_pair>
<question>Calculate the population standard deviation of this dataset: [12, 15, 18, 22, 25, 30, 35]. Round to 2 decimal places.</question>
<answer>7.61</answer>
</qa_pair>
<qa_pair>
<question>Calculate the pH of a solution with a hydrogen ion concentration of 3.5 × 10^-5 M. Round to 2 decimal places.</question>
<answer>4.46</answer>
</qa_pair>
</evaluation>

2
scripts/requirements.txt Normal file
View File

@@ -0,0 +1,2 @@
anthropic>=0.39.0
mcp>=1.1.0