commit de3acf688632bcd453368506ffcd2267320ed2e3 Author: Zhongwei Li Date: Sat Nov 29 18:16:03 2025 +0800 Initial commit diff --git a/.claude-plugin/plugin.json b/.claude-plugin/plugin.json new file mode 100644 index 0000000..bd72b11 --- /dev/null +++ b/.claude-plugin/plugin.json @@ -0,0 +1,12 @@ +{ + "name": "mcp-builder", + "description": "Guides creation of high-quality MCP (Model Context Protocol) servers for integrating external APIs and services with LLMs using Python or TypeScript.", + "version": "0.0.0-2025.11.28", + "author": { + "name": "ComposioHQ", + "email": "tech@composio.dev" + }, + "skills": [ + "./" + ] +} \ No newline at end of file diff --git a/LICENSE.txt b/LICENSE.txt new file mode 100644 index 0000000..7a4a3ea --- /dev/null +++ b/LICENSE.txt @@ -0,0 +1,202 @@ + + Apache License + Version 2.0, January 2004 + http://www.apache.org/licenses/ + + TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION + + 1. Definitions. + + "License" shall mean the terms and conditions for use, reproduction, + and distribution as defined by Sections 1 through 9 of this document. + + "Licensor" shall mean the copyright owner or entity authorized by + the copyright owner that is granting the License. + + "Legal Entity" shall mean the union of the acting entity and all + other entities that control, are controlled by, or are under common + control with that entity. For the purposes of this definition, + "control" means (i) the power, direct or indirect, to cause the + direction or management of such entity, whether by contract or + otherwise, or (ii) ownership of fifty percent (50%) or more of the + outstanding shares, or (iii) beneficial ownership of such entity. + + "You" (or "Your") shall mean an individual or Legal Entity + exercising permissions granted by this License. + + "Source" form shall mean the preferred form for making modifications, + including but not limited to software source code, documentation + source, and configuration files. + + "Object" form shall mean any form resulting from mechanical + transformation or translation of a Source form, including but + not limited to compiled object code, generated documentation, + and conversions to other media types. + + "Work" shall mean the work of authorship, whether in Source or + Object form, made available under the License, as indicated by a + copyright notice that is included in or attached to the work + (an example is provided in the Appendix below). + + "Derivative Works" shall mean any work, whether in Source or Object + form, that is based on (or derived from) the Work and for which the + editorial revisions, annotations, elaborations, or other modifications + represent, as a whole, an original work of authorship. For the purposes + of this License, Derivative Works shall not include works that remain + separable from, or merely link (or bind by name) to the interfaces of, + the Work and Derivative Works thereof. + + "Contribution" shall mean any work of authorship, including + the original version of the Work and any modifications or additions + to that Work or Derivative Works thereof, that is intentionally + submitted to Licensor for inclusion in the Work by the copyright owner + or by an individual or Legal Entity authorized to submit on behalf of + the copyright owner. For the purposes of this definition, "submitted" + means any form of electronic, verbal, or written communication sent + to the Licensor or its representatives, including but not limited to + communication on electronic mailing lists, source code control systems, + and issue tracking systems that are managed by, or on behalf of, the + Licensor for the purpose of discussing and improving the Work, but + excluding communication that is conspicuously marked or otherwise + designated in writing by the copyright owner as "Not a Contribution." + + "Contributor" shall mean Licensor and any individual or Legal Entity + on behalf of whom a Contribution has been received by Licensor and + subsequently incorporated within the Work. + + 2. Grant of Copyright License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + copyright license to reproduce, prepare Derivative Works of, + publicly display, publicly perform, sublicense, and distribute the + Work and such Derivative Works in Source or Object form. + + 3. Grant of Patent License. Subject to the terms and conditions of + this License, each Contributor hereby grants to You a perpetual, + worldwide, non-exclusive, no-charge, royalty-free, irrevocable + (except as stated in this section) patent license to make, have made, + use, offer to sell, sell, import, and otherwise transfer the Work, + where such license applies only to those patent claims licensable + by such Contributor that are necessarily infringed by their + Contribution(s) alone or by combination of their Contribution(s) + with the Work to which such Contribution(s) was submitted. If You + institute patent litigation against any entity (including a + cross-claim or counterclaim in a lawsuit) alleging that the Work + or a Contribution incorporated within the Work constitutes direct + or contributory patent infringement, then any patent licenses + granted to You under this License for that Work shall terminate + as of the date such litigation is filed. + + 4. Redistribution. You may reproduce and distribute copies of the + Work or Derivative Works thereof in any medium, with or without + modifications, and in Source or Object form, provided that You + meet the following conditions: + + (a) You must give any other recipients of the Work or + Derivative Works a copy of this License; and + + (b) You must cause any modified files to carry prominent notices + stating that You changed the files; and + + (c) You must retain, in the Source form of any Derivative Works + that You distribute, all copyright, patent, trademark, and + attribution notices from the Source form of the Work, + excluding those notices that do not pertain to any part of + the Derivative Works; and + + (d) If the Work includes a "NOTICE" text file as part of its + distribution, then any Derivative Works that You distribute must + include a readable copy of the attribution notices contained + within such NOTICE file, excluding those notices that do not + pertain to any part of the Derivative Works, in at least one + of the following places: within a NOTICE text file distributed + as part of the Derivative Works; within the Source form or + documentation, if provided along with the Derivative Works; or, + within a display generated by the Derivative Works, if and + wherever such third-party notices normally appear. The contents + of the NOTICE file are for informational purposes only and + do not modify the License. You may add Your own attribution + notices within Derivative Works that You distribute, alongside + or as an addendum to the NOTICE text from the Work, provided + that such additional attribution notices cannot be construed + as modifying the License. + + You may add Your own copyright statement to Your modifications and + may provide additional or different license terms and conditions + for use, reproduction, or distribution of Your modifications, or + for any such Derivative Works as a whole, provided Your use, + reproduction, and distribution of the Work otherwise complies with + the conditions stated in this License. + + 5. Submission of Contributions. Unless You explicitly state otherwise, + any Contribution intentionally submitted for inclusion in the Work + by You to the Licensor shall be under the terms and conditions of + this License, without any additional terms or conditions. + Notwithstanding the above, nothing herein shall supersede or modify + the terms of any separate license agreement you may have executed + with Licensor regarding such Contributions. + + 6. Trademarks. This License does not grant permission to use the trade + names, trademarks, service marks, or product names of the Licensor, + except as required for reasonable and customary use in describing the + origin of the Work and reproducing the content of the NOTICE file. + + 7. Disclaimer of Warranty. Unless required by applicable law or + agreed to in writing, Licensor provides the Work (and each + Contributor provides its Contributions) on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or + implied, including, without limitation, any warranties or conditions + of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A + PARTICULAR PURPOSE. You are solely responsible for determining the + appropriateness of using or redistributing the Work and assume any + risks associated with Your exercise of permissions under this License. + + 8. Limitation of Liability. In no event and under no legal theory, + whether in tort (including negligence), contract, or otherwise, + unless required by applicable law (such as deliberate and grossly + negligent acts) or agreed to in writing, shall any Contributor be + liable to You for damages, including any direct, indirect, special, + incidental, or consequential damages of any character arising as a + result of this License or out of the use or inability to use the + Work (including but not limited to damages for loss of goodwill, + work stoppage, computer failure or malfunction, or any and all + other commercial damages or losses), even if such Contributor + has been advised of the possibility of such damages. + + 9. Accepting Warranty or Additional Liability. While redistributing + the Work or Derivative Works thereof, You may choose to offer, + and charge a fee for, acceptance of support, warranty, indemnity, + or other liability obligations and/or rights consistent with this + License. However, in accepting such obligations, You may act only + on Your own behalf and on Your sole responsibility, not on behalf + of any other Contributor, and only if You agree to indemnify, + defend, and hold each Contributor harmless for any liability + incurred by, or claims asserted against, such Contributor by reason + of your accepting any such warranty or additional liability. + + END OF TERMS AND CONDITIONS + + APPENDIX: How to apply the Apache License to your work. + + To apply the Apache License to your work, attach the following + boilerplate notice, with the fields enclosed by brackets "[]" + replaced with your own identifying information. (Don't include + the brackets!) The text should be enclosed in the appropriate + comment syntax for the file format. We also recommend that a + file or class name and description of purpose be included on the + same "printed page" as the copyright notice for easier + identification within third-party archives. + + Copyright [yyyy] [name of copyright owner] + + Licensed under the Apache License, Version 2.0 (the "License"); + you may not use this file except in compliance with the License. + You may obtain a copy of the License at + + http://www.apache.org/licenses/LICENSE-2.0 + + Unless required by applicable law or agreed to in writing, software + distributed under the License is distributed on an "AS IS" BASIS, + WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + See the License for the specific language governing permissions and + limitations under the License. \ No newline at end of file diff --git a/README.md b/README.md new file mode 100644 index 0000000..62fc8ba --- /dev/null +++ b/README.md @@ -0,0 +1,3 @@ +# mcp-builder + +Guides creation of high-quality MCP (Model Context Protocol) servers for integrating external APIs and services with LLMs using Python or TypeScript. diff --git a/SKILL.md b/SKILL.md new file mode 100644 index 0000000..c9ef8a2 --- /dev/null +++ b/SKILL.md @@ -0,0 +1,328 @@ +--- +name: mcp-builder +description: Guide for creating high-quality MCP (Model Context Protocol) servers that enable LLMs to interact with external services through well-designed tools. Use when building MCP servers to integrate external APIs or services, whether in Python (FastMCP) or Node/TypeScript (MCP SDK). +license: Complete terms in LICENSE.txt +--- + +# MCP Server Development Guide + +## Overview + +To create high-quality MCP (Model Context Protocol) servers that enable LLMs to effectively interact with external services, use this skill. An MCP server provides tools that allow LLMs to access external services and APIs. The quality of an MCP server is measured by how well it enables LLMs to accomplish real-world tasks using the tools provided. + +--- + +# Process + +## šŸš€ High-Level Workflow + +Creating a high-quality MCP server involves four main phases: + +### Phase 1: Deep Research and Planning + +#### 1.1 Understand Agent-Centric Design Principles + +Before diving into implementation, understand how to design tools for AI agents by reviewing these principles: + +**Build for Workflows, Not Just API Endpoints:** +- Don't simply wrap existing API endpoints - build thoughtful, high-impact workflow tools +- Consolidate related operations (e.g., `schedule_event` that both checks availability and creates event) +- Focus on tools that enable complete tasks, not just individual API calls +- Consider what workflows agents actually need to accomplish + +**Optimize for Limited Context:** +- Agents have constrained context windows - make every token count +- Return high-signal information, not exhaustive data dumps +- Provide "concise" vs "detailed" response format options +- Default to human-readable identifiers over technical codes (names over IDs) +- Consider the agent's context budget as a scarce resource + +**Design Actionable Error Messages:** +- Error messages should guide agents toward correct usage patterns +- Suggest specific next steps: "Try using filter='active_only' to reduce results" +- Make errors educational, not just diagnostic +- Help agents learn proper tool usage through clear feedback + +**Follow Natural Task Subdivisions:** +- Tool names should reflect how humans think about tasks +- Group related tools with consistent prefixes for discoverability +- Design tools around natural workflows, not just API structure + +**Use Evaluation-Driven Development:** +- Create realistic evaluation scenarios early +- Let agent feedback drive tool improvements +- Prototype quickly and iterate based on actual agent performance + +#### 1.3 Study MCP Protocol Documentation + +**Fetch the latest MCP protocol documentation:** + +Use WebFetch to load: `https://modelcontextprotocol.io/llms-full.txt` + +This comprehensive document contains the complete MCP specification and guidelines. + +#### 1.4 Study Framework Documentation + +**Load and read the following reference files:** + +- **MCP Best Practices**: [šŸ“‹ View Best Practices](./reference/mcp_best_practices.md) - Core guidelines for all MCP servers + +**For Python implementations, also load:** +- **Python SDK Documentation**: Use WebFetch to load `https://raw.githubusercontent.com/modelcontextprotocol/python-sdk/main/README.md` +- [šŸ Python Implementation Guide](./reference/python_mcp_server.md) - Python-specific best practices and examples + +**For Node/TypeScript implementations, also load:** +- **TypeScript SDK Documentation**: Use WebFetch to load `https://raw.githubusercontent.com/modelcontextprotocol/typescript-sdk/main/README.md` +- [⚔ TypeScript Implementation Guide](./reference/node_mcp_server.md) - Node/TypeScript-specific best practices and examples + +#### 1.5 Exhaustively Study API Documentation + +To integrate a service, read through **ALL** available API documentation: +- Official API reference documentation +- Authentication and authorization requirements +- Rate limiting and pagination patterns +- Error responses and status codes +- Available endpoints and their parameters +- Data models and schemas + +**To gather comprehensive information, use web search and the WebFetch tool as needed.** + +#### 1.6 Create a Comprehensive Implementation Plan + +Based on your research, create a detailed plan that includes: + +**Tool Selection:** +- List the most valuable endpoints/operations to implement +- Prioritize tools that enable the most common and important use cases +- Consider which tools work together to enable complex workflows + +**Shared Utilities and Helpers:** +- Identify common API request patterns +- Plan pagination helpers +- Design filtering and formatting utilities +- Plan error handling strategies + +**Input/Output Design:** +- Define input validation models (Pydantic for Python, Zod for TypeScript) +- Design consistent response formats (e.g., JSON or Markdown), and configurable levels of detail (e.g., Detailed or Concise) +- Plan for large-scale usage (thousands of users/resources) +- Implement character limits and truncation strategies (e.g., 25,000 tokens) + +**Error Handling Strategy:** +- Plan graceful failure modes +- Design clear, actionable, LLM-friendly, natural language error messages which prompt further action +- Consider rate limiting and timeout scenarios +- Handle authentication and authorization errors + +--- + +### Phase 2: Implementation + +Now that you have a comprehensive plan, begin implementation following language-specific best practices. + +#### 2.1 Set Up Project Structure + +**For Python:** +- Create a single `.py` file or organize into modules if complex (see [šŸ Python Guide](./reference/python_mcp_server.md)) +- Use the MCP Python SDK for tool registration +- Define Pydantic models for input validation + +**For Node/TypeScript:** +- Create proper project structure (see [⚔ TypeScript Guide](./reference/node_mcp_server.md)) +- Set up `package.json` and `tsconfig.json` +- Use MCP TypeScript SDK +- Define Zod schemas for input validation + +#### 2.2 Implement Core Infrastructure First + +**To begin implementation, create shared utilities before implementing tools:** +- API request helper functions +- Error handling utilities +- Response formatting functions (JSON and Markdown) +- Pagination helpers +- Authentication/token management + +#### 2.3 Implement Tools Systematically + +For each tool in the plan: + +**Define Input Schema:** +- Use Pydantic (Python) or Zod (TypeScript) for validation +- Include proper constraints (min/max length, regex patterns, min/max values, ranges) +- Provide clear, descriptive field descriptions +- Include diverse examples in field descriptions + +**Write Comprehensive Docstrings/Descriptions:** +- One-line summary of what the tool does +- Detailed explanation of purpose and functionality +- Explicit parameter types with examples +- Complete return type schema +- Usage examples (when to use, when not to use) +- Error handling documentation, which outlines how to proceed given specific errors + +**Implement Tool Logic:** +- Use shared utilities to avoid code duplication +- Follow async/await patterns for all I/O +- Implement proper error handling +- Support multiple response formats (JSON and Markdown) +- Respect pagination parameters +- Check character limits and truncate appropriately + +**Add Tool Annotations:** +- `readOnlyHint`: true (for read-only operations) +- `destructiveHint`: false (for non-destructive operations) +- `idempotentHint`: true (if repeated calls have same effect) +- `openWorldHint`: true (if interacting with external systems) + +#### 2.4 Follow Language-Specific Best Practices + +**At this point, load the appropriate language guide:** + +**For Python: Load [šŸ Python Implementation Guide](./reference/python_mcp_server.md) and ensure the following:** +- Using MCP Python SDK with proper tool registration +- Pydantic v2 models with `model_config` +- Type hints throughout +- Async/await for all I/O operations +- Proper imports organization +- Module-level constants (CHARACTER_LIMIT, API_BASE_URL) + +**For Node/TypeScript: Load [⚔ TypeScript Implementation Guide](./reference/node_mcp_server.md) and ensure the following:** +- Using `server.registerTool` properly +- Zod schemas with `.strict()` +- TypeScript strict mode enabled +- No `any` types - use proper types +- Explicit Promise return types +- Build process configured (`npm run build`) + +--- + +### Phase 3: Review and Refine + +After initial implementation: + +#### 3.1 Code Quality Review + +To ensure quality, review the code for: +- **DRY Principle**: No duplicated code between tools +- **Composability**: Shared logic extracted into functions +- **Consistency**: Similar operations return similar formats +- **Error Handling**: All external calls have error handling +- **Type Safety**: Full type coverage (Python type hints, TypeScript types) +- **Documentation**: Every tool has comprehensive docstrings/descriptions + +#### 3.2 Test and Build + +**Important:** MCP servers are long-running processes that wait for requests over stdio/stdin or sse/http. Running them directly in your main process (e.g., `python server.py` or `node dist/index.js`) will cause your process to hang indefinitely. + +**Safe ways to test the server:** +- Use the evaluation harness (see Phase 4) - recommended approach +- Run the server in tmux to keep it outside your main process +- Use a timeout when testing: `timeout 5s python server.py` + +**For Python:** +- Verify Python syntax: `python -m py_compile your_server.py` +- Check imports work correctly by reviewing the file +- To manually test: Run server in tmux, then test with evaluation harness in main process +- Or use the evaluation harness directly (it manages the server for stdio transport) + +**For Node/TypeScript:** +- Run `npm run build` and ensure it completes without errors +- Verify dist/index.js is created +- To manually test: Run server in tmux, then test with evaluation harness in main process +- Or use the evaluation harness directly (it manages the server for stdio transport) + +#### 3.3 Use Quality Checklist + +To verify implementation quality, load the appropriate checklist from the language-specific guide: +- Python: see "Quality Checklist" in [šŸ Python Guide](./reference/python_mcp_server.md) +- Node/TypeScript: see "Quality Checklist" in [⚔ TypeScript Guide](./reference/node_mcp_server.md) + +--- + +### Phase 4: Create Evaluations + +After implementing your MCP server, create comprehensive evaluations to test its effectiveness. + +**Load [āœ… Evaluation Guide](./reference/evaluation.md) for complete evaluation guidelines.** + +#### 4.1 Understand Evaluation Purpose + +Evaluations test whether LLMs can effectively use your MCP server to answer realistic, complex questions. + +#### 4.2 Create 10 Evaluation Questions + +To create effective evaluations, follow the process outlined in the evaluation guide: + +1. **Tool Inspection**: List available tools and understand their capabilities +2. **Content Exploration**: Use READ-ONLY operations to explore available data +3. **Question Generation**: Create 10 complex, realistic questions +4. **Answer Verification**: Solve each question yourself to verify answers + +#### 4.3 Evaluation Requirements + +Each question must be: +- **Independent**: Not dependent on other questions +- **Read-only**: Only non-destructive operations required +- **Complex**: Requiring multiple tool calls and deep exploration +- **Realistic**: Based on real use cases humans would care about +- **Verifiable**: Single, clear answer that can be verified by string comparison +- **Stable**: Answer won't change over time + +#### 4.4 Output Format + +Create an XML file with this structure: + +```xml + + + Find discussions about AI model launches with animal codenames. One model needed a specific safety designation that uses the format ASL-X. What number X was being determined for the model named after a spotted wild cat? + 3 + + + +``` + +--- + +# Reference Files + +## šŸ“š Documentation Library + +Load these resources as needed during development: + +### Core MCP Documentation (Load First) +- **MCP Protocol**: Fetch from `https://modelcontextprotocol.io/llms-full.txt` - Complete MCP specification +- [šŸ“‹ MCP Best Practices](./reference/mcp_best_practices.md) - Universal MCP guidelines including: + - Server and tool naming conventions + - Response format guidelines (JSON vs Markdown) + - Pagination best practices + - Character limits and truncation strategies + - Tool development guidelines + - Security and error handling standards + +### SDK Documentation (Load During Phase 1/2) +- **Python SDK**: Fetch from `https://raw.githubusercontent.com/modelcontextprotocol/python-sdk/main/README.md` +- **TypeScript SDK**: Fetch from `https://raw.githubusercontent.com/modelcontextprotocol/typescript-sdk/main/README.md` + +### Language-Specific Implementation Guides (Load During Phase 2) +- [šŸ Python Implementation Guide](./reference/python_mcp_server.md) - Complete Python/FastMCP guide with: + - Server initialization patterns + - Pydantic model examples + - Tool registration with `@mcp.tool` + - Complete working examples + - Quality checklist + +- [⚔ TypeScript Implementation Guide](./reference/node_mcp_server.md) - Complete TypeScript guide with: + - Project structure + - Zod schema patterns + - Tool registration with `server.registerTool` + - Complete working examples + - Quality checklist + +### Evaluation Guide (Load During Phase 4) +- [āœ… Evaluation Guide](./reference/evaluation.md) - Complete evaluation creation guide with: + - Question creation guidelines + - Answer verification strategies + - XML format specifications + - Example questions and answers + - Running an evaluation with the provided scripts diff --git a/plugin.lock.json b/plugin.lock.json new file mode 100644 index 0000000..e653434 --- /dev/null +++ b/plugin.lock.json @@ -0,0 +1,81 @@ +{ + "$schema": "internal://schemas/plugin.lock.v1.json", + "pluginId": "gh:ComposioHQ/awesome-claude-skills:mcp-builder", + "normalized": { + "repo": null, + "ref": "refs/tags/v20251128.0", + "commit": "ebd98479843e51b0e3fa9903725f600a9b7184f8", + "treeHash": "c1b300be63dba08470cdb71663139eb77e0e013f434de6bed4d68085c76a3cfc", + "generatedAt": "2025-11-28T10:10:07.019389Z", + "toolVersion": "publish_plugins.py@0.2.0" + }, + "origin": { + "remote": "git@github.com:zhongweili/42plugin-data.git", + "branch": "master", + "commit": "aa1497ed0949fd50e99e70d6324a29c5b34f9390", + "repoRoot": "/Users/zhongweili/projects/openmind/42plugin-data" + }, + "manifest": { + "name": "mcp-builder", + "description": "Guides creation of high-quality MCP (Model Context Protocol) servers for integrating external APIs and services with LLMs using Python or TypeScript.", + "version": null + }, + "content": { + "files": [ + { + "path": "README.md", + "sha256": "e1d54dc87f5f55bb18e6903a3abc516a752f633374be43061e278665acf8cef5" + }, + { + "path": "SKILL.md", + "sha256": "b1010e90adcb8fd6bf57640df34ab6454fbf7e4216e150a4620f7caccadc4e63" + }, + { + "path": "LICENSE.txt", + "sha256": "58d1e17ffe5109a7ae296caafcadfdbe6a7d176f0bc4ab01e12a689b0499d8bd" + }, + { + "path": "scripts/requirements.txt", + "sha256": "d5d7558b2368ecea9dfeed7d1fbc71ee9e0750bebd1282faa527d528a344c3c7" + }, + { + "path": "scripts/evaluation.py", + "sha256": "49ed1d17cdce5da101b210197740713f49b935c29d4f339542a14b132658e6f7" + }, + { + "path": "scripts/connections.py", + "sha256": "9403668a2041568772082a8b334122c1f88daf0541fb393af4522d0094a47a6e" + }, + { + "path": "scripts/example_evaluation.xml", + "sha256": "9272b348ddcc4b06ba562367ccd0770e018158c0068ac5116d5e34aaeff8777a" + }, + { + "path": ".claude-plugin/plugin.json", + "sha256": "347c8e86489bfc19a8a3510e52eb6d7b858084b2a3385cd213632f14461a46d1" + }, + { + "path": "reference/mcp_best_practices.md", + "sha256": "3bdf013379bdd3c198baccd0f183441c710fc7cae07ba4c6f8f8048276519688" + }, + { + "path": "reference/python_mcp_server.md", + "sha256": "4e6db48188f44ff4eb707f50b8d273d5d18af4b88d326f7a26f03a405064bc0b" + }, + { + "path": "reference/node_mcp_server.md", + "sha256": "40b03e9c07463d5db524c1f5140ef60713fdd911c2f4386f89e0b94d43b8764e" + }, + { + "path": "reference/evaluation.md", + "sha256": "8c99479f8a2d22a636c38e274537aac3610879e26f34e0709825077c4576f427" + } + ], + "dirSha256": "c1b300be63dba08470cdb71663139eb77e0e013f434de6bed4d68085c76a3cfc" + }, + "security": { + "scannedAt": null, + "scannerVersion": null, + "flags": [] + } +} \ No newline at end of file diff --git a/reference/evaluation.md b/reference/evaluation.md new file mode 100644 index 0000000..87e9bb7 --- /dev/null +++ b/reference/evaluation.md @@ -0,0 +1,602 @@ +# MCP Server Evaluation Guide + +## Overview + +This document provides guidance on creating comprehensive evaluations for MCP servers. Evaluations test whether LLMs can effectively use your MCP server to answer realistic, complex questions using only the tools provided. + +--- + +## Quick Reference + +### Evaluation Requirements +- Create 10 human-readable questions +- Questions must be READ-ONLY, INDEPENDENT, NON-DESTRUCTIVE +- Each question requires multiple tool calls (potentially dozens) +- Answers must be single, verifiable values +- Answers must be STABLE (won't change over time) + +### Output Format +```xml + + + Your question here + Single verifiable answer + + +``` + +--- + +## Purpose of Evaluations + +The measure of quality of an MCP server is NOT how well or comprehensively the server implements tools, but how well these implementations (input/output schemas, docstrings/descriptions, functionality) enable LLMs with no other context and access ONLY to the MCP servers to answer realistic and difficult questions. + +## Evaluation Overview + +Create 10 human-readable questions requiring ONLY READ-ONLY, INDEPENDENT, NON-DESTRUCTIVE, and IDEMPOTENT operations to answer. Each question should be: +- Realistic +- Clear and concise +- Unambiguous +- Complex, requiring potentially dozens of tool calls or steps +- Answerable with a single, verifiable value that you identify in advance + +## Question Guidelines + +### Core Requirements + +1. **Questions MUST be independent** + - Each question should NOT depend on the answer to any other question + - Should not assume prior write operations from processing another question + +2. **Questions MUST require ONLY NON-DESTRUCTIVE AND IDEMPOTENT tool use** + - Should not instruct or require modifying state to arrive at the correct answer + +3. **Questions must be REALISTIC, CLEAR, CONCISE, and COMPLEX** + - Must require another LLM to use multiple (potentially dozens of) tools or steps to answer + +### Complexity and Depth + +4. **Questions must require deep exploration** + - Consider multi-hop questions requiring multiple sub-questions and sequential tool calls + - Each step should benefit from information found in previous questions + +5. **Questions may require extensive paging** + - May need paging through multiple pages of results + - May require querying old data (1-2 years out-of-date) to find niche information + - The questions must be DIFFICULT + +6. **Questions must require deep understanding** + - Rather than surface-level knowledge + - May pose complex ideas as True/False questions requiring evidence + - May use multiple-choice format where LLM must search different hypotheses + +7. **Questions must not be solvable with straightforward keyword search** + - Do not include specific keywords from the target content + - Use synonyms, related concepts, or paraphrases + - Require multiple searches, analyzing multiple related items, extracting context, then deriving the answer + +### Tool Testing + +8. **Questions should stress-test tool return values** + - May elicit tools returning large JSON objects or lists, overwhelming the LLM + - Should require understanding multiple modalities of data: + - IDs and names + - Timestamps and datetimes (months, days, years, seconds) + - File IDs, names, extensions, and mimetypes + - URLs, GIDs, etc. + - Should probe the tool's ability to return all useful forms of data + +9. **Questions should MOSTLY reflect real human use cases** + - The kinds of information retrieval tasks that HUMANS assisted by an LLM would care about + +10. **Questions may require dozens of tool calls** + - This challenges LLMs with limited context + - Encourages MCP server tools to reduce information returned + +11. **Include ambiguous questions** + - May be ambiguous OR require difficult decisions on which tools to call + - Force the LLM to potentially make mistakes or misinterpret + - Ensure that despite AMBIGUITY, there is STILL A SINGLE VERIFIABLE ANSWER + +### Stability + +12. **Questions must be designed so the answer DOES NOT CHANGE** + - Do not ask questions that rely on "current state" which is dynamic + - For example, do not count: + - Number of reactions to a post + - Number of replies to a thread + - Number of members in a channel + +13. **DO NOT let the MCP server RESTRICT the kinds of questions you create** + - Create challenging and complex questions + - Some may not be solvable with the available MCP server tools + - Questions may require specific output formats (datetime vs. epoch time, JSON vs. MARKDOWN) + - Questions may require dozens of tool calls to complete + +## Answer Guidelines + +### Verification + +1. **Answers must be VERIFIABLE via direct string comparison** + - If the answer can be re-written in many formats, clearly specify the output format in the QUESTION + - Examples: "Use YYYY/MM/DD.", "Respond True or False.", "Answer A, B, C, or D and nothing else." + - Answer should be a single VERIFIABLE value such as: + - User ID, user name, display name, first name, last name + - Channel ID, channel name + - Message ID, string + - URL, title + - Numerical quantity + - Timestamp, datetime + - Boolean (for True/False questions) + - Email address, phone number + - File ID, file name, file extension + - Multiple choice answer + - Answers must not require special formatting or complex, structured output + - Answer will be verified using DIRECT STRING COMPARISON + +### Readability + +2. **Answers should generally prefer HUMAN-READABLE formats** + - Examples: names, first name, last name, datetime, file name, message string, URL, yes/no, true/false, a/b/c/d + - Rather than opaque IDs (though IDs are acceptable) + - The VAST MAJORITY of answers should be human-readable + +### Stability + +3. **Answers must be STABLE/STATIONARY** + - Look at old content (e.g., conversations that have ended, projects that have launched, questions answered) + - Create QUESTIONS based on "closed" concepts that will always return the same answer + - Questions may ask to consider a fixed time window to insulate from non-stationary answers + - Rely on context UNLIKELY to change + - Example: if finding a paper name, be SPECIFIC enough so answer is not confused with papers published later + +4. **Answers must be CLEAR and UNAMBIGUOUS** + - Questions must be designed so there is a single, clear answer + - Answer can be derived from using the MCP server tools + +### Diversity + +5. **Answers must be DIVERSE** + - Answer should be a single VERIFIABLE value in diverse modalities and formats + - User concept: user ID, user name, display name, first name, last name, email address, phone number + - Channel concept: channel ID, channel name, channel topic + - Message concept: message ID, message string, timestamp, month, day, year + +6. **Answers must NOT be complex structures** + - Not a list of values + - Not a complex object + - Not a list of IDs or strings + - Not natural language text + - UNLESS the answer can be straightforwardly verified using DIRECT STRING COMPARISON + - And can be realistically reproduced + - It should be unlikely that an LLM would return the same list in any other order or format + +## Evaluation Process + +### Step 1: Documentation Inspection + +Read the documentation of the target API to understand: +- Available endpoints and functionality +- If ambiguity exists, fetch additional information from the web +- Parallelize this step AS MUCH AS POSSIBLE +- Ensure each subagent is ONLY examining documentation from the file system or on the web + +### Step 2: Tool Inspection + +List the tools available in the MCP server: +- Inspect the MCP server directly +- Understand input/output schemas, docstrings, and descriptions +- WITHOUT calling the tools themselves at this stage + +### Step 3: Developing Understanding + +Repeat steps 1 & 2 until you have a good understanding: +- Iterate multiple times +- Think about the kinds of tasks you want to create +- Refine your understanding +- At NO stage should you READ the code of the MCP server implementation itself +- Use your intuition and understanding to create reasonable, realistic, but VERY challenging tasks + +### Step 4: Read-Only Content Inspection + +After understanding the API and tools, USE the MCP server tools: +- Inspect content using READ-ONLY and NON-DESTRUCTIVE operations ONLY +- Goal: identify specific content (e.g., users, channels, messages, projects, tasks) for creating realistic questions +- Should NOT call any tools that modify state +- Will NOT read the code of the MCP server implementation itself +- Parallelize this step with individual sub-agents pursuing independent explorations +- Ensure each subagent is only performing READ-ONLY, NON-DESTRUCTIVE, and IDEMPOTENT operations +- BE CAREFUL: SOME TOOLS may return LOTS OF DATA which would cause you to run out of CONTEXT +- Make INCREMENTAL, SMALL, AND TARGETED tool calls for exploration +- In all tool call requests, use the `limit` parameter to limit results (<10) +- Use pagination + +### Step 5: Task Generation + +After inspecting the content, create 10 human-readable questions: +- An LLM should be able to answer these with the MCP server +- Follow all question and answer guidelines above + +## Output Format + +Each QA pair consists of a question and an answer. The output should be an XML file with this structure: + +```xml + + + Find the project created in Q2 2024 with the highest number of completed tasks. What is the project name? + Website Redesign + + + Search for issues labeled as "bug" that were closed in March 2024. Which user closed the most issues? Provide their username. + sarah_dev + + + Look for pull requests that modified files in the /api directory and were merged between January 1 and January 31, 2024. How many different contributors worked on these PRs? + 7 + + + Find the repository with the most stars that was created before 2023. What is the repository name? + data-pipeline + + +``` + +## Evaluation Examples + +### Good Questions + +**Example 1: Multi-hop question requiring deep exploration (GitHub MCP)** +```xml + + Find the repository that was archived in Q3 2023 and had previously been the most forked project in the organization. What was the primary programming language used in that repository? + Python + +``` + +This question is good because: +- Requires multiple searches to find archived repositories +- Needs to identify which had the most forks before archival +- Requires examining repository details for the language +- Answer is a simple, verifiable value +- Based on historical (closed) data that won't change + +**Example 2: Requires understanding context without keyword matching (Project Management MCP)** +```xml + + Locate the initiative focused on improving customer onboarding that was completed in late 2023. The project lead created a retrospective document after completion. What was the lead's role title at that time? + Product Manager + +``` + +This question is good because: +- Doesn't use specific project name ("initiative focused on improving customer onboarding") +- Requires finding completed projects from specific timeframe +- Needs to identify the project lead and their role +- Requires understanding context from retrospective documents +- Answer is human-readable and stable +- Based on completed work (won't change) + +**Example 3: Complex aggregation requiring multiple steps (Issue Tracker MCP)** +```xml + + Among all bugs reported in January 2024 that were marked as critical priority, which assignee resolved the highest percentage of their assigned bugs within 48 hours? Provide the assignee's username. + alex_eng + +``` + +This question is good because: +- Requires filtering bugs by date, priority, and status +- Needs to group by assignee and calculate resolution rates +- Requires understanding timestamps to determine 48-hour windows +- Tests pagination (potentially many bugs to process) +- Answer is a single username +- Based on historical data from specific time period + +**Example 4: Requires synthesis across multiple data types (CRM MCP)** +```xml + + Find the account that upgraded from the Starter to Enterprise plan in Q4 2023 and had the highest annual contract value. What industry does this account operate in? + Healthcare + +``` + +This question is good because: +- Requires understanding subscription tier changes +- Needs to identify upgrade events in specific timeframe +- Requires comparing contract values +- Must access account industry information +- Answer is simple and verifiable +- Based on completed historical transactions + +### Poor Questions + +**Example 1: Answer changes over time** +```xml + + How many open issues are currently assigned to the engineering team? + 47 + +``` + +This question is poor because: +- The answer will change as issues are created, closed, or reassigned +- Not based on stable/stationary data +- Relies on "current state" which is dynamic + +**Example 2: Too easy with keyword search** +```xml + + Find the pull request with title "Add authentication feature" and tell me who created it. + developer123 + +``` + +This question is poor because: +- Can be solved with a straightforward keyword search for exact title +- Doesn't require deep exploration or understanding +- No synthesis or analysis needed + +**Example 3: Ambiguous answer format** +```xml + + List all the repositories that have Python as their primary language. + repo1, repo2, repo3, data-pipeline, ml-tools + +``` + +This question is poor because: +- Answer is a list that could be returned in any order +- Difficult to verify with direct string comparison +- LLM might format differently (JSON array, comma-separated, newline-separated) +- Better to ask for a specific aggregate (count) or superlative (most stars) + +## Verification Process + +After creating evaluations: + +1. **Examine the XML file** to understand the schema +2. **Load each task instruction** and in parallel using the MCP server and tools, identify the correct answer by attempting to solve the task YOURSELF +3. **Flag any operations** that require WRITE or DESTRUCTIVE operations +4. **Accumulate all CORRECT answers** and replace any incorrect answers in the document +5. **Remove any ``** that require WRITE or DESTRUCTIVE operations + +Remember to parallelize solving tasks to avoid running out of context, then accumulate all answers and make changes to the file at the end. + +## Tips for Creating Quality Evaluations + +1. **Think Hard and Plan Ahead** before generating tasks +2. **Parallelize Where Opportunity Arises** to speed up the process and manage context +3. **Focus on Realistic Use Cases** that humans would actually want to accomplish +4. **Create Challenging Questions** that test the limits of the MCP server's capabilities +5. **Ensure Stability** by using historical data and closed concepts +6. **Verify Answers** by solving the questions yourself using the MCP server tools +7. **Iterate and Refine** based on what you learn during the process + +--- + +# Running Evaluations + +After creating your evaluation file, you can use the provided evaluation harness to test your MCP server. + +## Setup + +1. **Install Dependencies** + + ```bash + pip install -r scripts/requirements.txt + ``` + + Or install manually: + ```bash + pip install anthropic mcp + ``` + +2. **Set API Key** + + ```bash + export ANTHROPIC_API_KEY=your_api_key_here + ``` + +## Evaluation File Format + +Evaluation files use XML format with `` elements: + +```xml + + + Find the project created in Q2 2024 with the highest number of completed tasks. What is the project name? + Website Redesign + + + Search for issues labeled as "bug" that were closed in March 2024. Which user closed the most issues? Provide their username. + sarah_dev + + +``` + +## Running Evaluations + +The evaluation script (`scripts/evaluation.py`) supports three transport types: + +**Important:** +- **stdio transport**: The evaluation script automatically launches and manages the MCP server process for you. Do not run the server manually. +- **sse/http transports**: You must start the MCP server separately before running the evaluation. The script connects to the already-running server at the specified URL. + +### 1. Local STDIO Server + +For locally-run MCP servers (script launches the server automatically): + +```bash +python scripts/evaluation.py \ + -t stdio \ + -c python \ + -a my_mcp_server.py \ + evaluation.xml +``` + +With environment variables: +```bash +python scripts/evaluation.py \ + -t stdio \ + -c python \ + -a my_mcp_server.py \ + -e API_KEY=abc123 \ + -e DEBUG=true \ + evaluation.xml +``` + +### 2. Server-Sent Events (SSE) + +For SSE-based MCP servers (you must start the server first): + +```bash +python scripts/evaluation.py \ + -t sse \ + -u https://example.com/mcp \ + -H "Authorization: Bearer token123" \ + -H "X-Custom-Header: value" \ + evaluation.xml +``` + +### 3. HTTP (Streamable HTTP) + +For HTTP-based MCP servers (you must start the server first): + +```bash +python scripts/evaluation.py \ + -t http \ + -u https://example.com/mcp \ + -H "Authorization: Bearer token123" \ + evaluation.xml +``` + +## Command-Line Options + +``` +usage: evaluation.py [-h] [-t {stdio,sse,http}] [-m MODEL] [-c COMMAND] + [-a ARGS [ARGS ...]] [-e ENV [ENV ...]] [-u URL] + [-H HEADERS [HEADERS ...]] [-o OUTPUT] + eval_file + +positional arguments: + eval_file Path to evaluation XML file + +optional arguments: + -h, --help Show help message + -t, --transport Transport type: stdio, sse, or http (default: stdio) + -m, --model Claude model to use (default: claude-3-7-sonnet-20250219) + -o, --output Output file for report (default: print to stdout) + +stdio options: + -c, --command Command to run MCP server (e.g., python, node) + -a, --args Arguments for the command (e.g., server.py) + -e, --env Environment variables in KEY=VALUE format + +sse/http options: + -u, --url MCP server URL + -H, --header HTTP headers in 'Key: Value' format +``` + +## Output + +The evaluation script generates a detailed report including: + +- **Summary Statistics**: + - Accuracy (correct/total) + - Average task duration + - Average tool calls per task + - Total tool calls + +- **Per-Task Results**: + - Prompt and expected response + - Actual response from the agent + - Whether the answer was correct (āœ…/āŒ) + - Duration and tool call details + - Agent's summary of its approach + - Agent's feedback on the tools + +### Save Report to File + +```bash +python scripts/evaluation.py \ + -t stdio \ + -c python \ + -a my_server.py \ + -o evaluation_report.md \ + evaluation.xml +``` + +## Complete Example Workflow + +Here's a complete example of creating and running an evaluation: + +1. **Create your evaluation file** (`my_evaluation.xml`): + +```xml + + + Find the user who created the most issues in January 2024. What is their username? + alice_developer + + + Among all pull requests merged in Q1 2024, which repository had the highest number? Provide the repository name. + backend-api + + + Find the project that was completed in December 2023 and had the longest duration from start to finish. How many days did it take? + 127 + + +``` + +2. **Install dependencies**: + +```bash +pip install -r scripts/requirements.txt +export ANTHROPIC_API_KEY=your_api_key +``` + +3. **Run evaluation**: + +```bash +python scripts/evaluation.py \ + -t stdio \ + -c python \ + -a github_mcp_server.py \ + -e GITHUB_TOKEN=ghp_xxx \ + -o github_eval_report.md \ + my_evaluation.xml +``` + +4. **Review the report** in `github_eval_report.md` to: + - See which questions passed/failed + - Read the agent's feedback on your tools + - Identify areas for improvement + - Iterate on your MCP server design + +## Troubleshooting + +### Connection Errors + +If you get connection errors: +- **STDIO**: Verify the command and arguments are correct +- **SSE/HTTP**: Check the URL is accessible and headers are correct +- Ensure any required API keys are set in environment variables or headers + +### Low Accuracy + +If many evaluations fail: +- Review the agent's feedback for each task +- Check if tool descriptions are clear and comprehensive +- Verify input parameters are well-documented +- Consider whether tools return too much or too little data +- Ensure error messages are actionable + +### Timeout Issues + +If tasks are timing out: +- Use a more capable model (e.g., `claude-3-7-sonnet-20250219`) +- Check if tools are returning too much data +- Verify pagination is working correctly +- Consider simplifying complex questions \ No newline at end of file diff --git a/reference/mcp_best_practices.md b/reference/mcp_best_practices.md new file mode 100644 index 0000000..db42af7 --- /dev/null +++ b/reference/mcp_best_practices.md @@ -0,0 +1,915 @@ +# MCP Server Development Best Practices and Guidelines + +## Overview + +This document compiles essential best practices and guidelines for building Model Context Protocol (MCP) servers. It covers naming conventions, tool design, response formats, pagination, error handling, security, and compliance requirements. + +--- + +## Quick Reference + +### Server Naming +- **Python**: `{service}_mcp` (e.g., `slack_mcp`) +- **Node/TypeScript**: `{service}-mcp-server` (e.g., `slack-mcp-server`) + +### Tool Naming +- Use snake_case with service prefix +- Format: `{service}_{action}_{resource}` +- Example: `slack_send_message`, `github_create_issue` + +### Response Formats +- Support both JSON and Markdown formats +- JSON for programmatic processing +- Markdown for human readability + +### Pagination +- Always respect `limit` parameter +- Return `has_more`, `next_offset`, `total_count` +- Default to 20-50 items + +### Character Limits +- Set CHARACTER_LIMIT constant (typically 25,000) +- Truncate gracefully with clear messages +- Provide guidance on filtering + +--- + +## Table of Contents +1. Server Naming Conventions +2. Tool Naming and Design +3. Response Format Guidelines +4. Pagination Best Practices +5. Character Limits and Truncation +6. Tool Development Best Practices +7. Transport Best Practices +8. Testing Requirements +9. OAuth and Security Best Practices +10. Resource Management Best Practices +11. Prompt Management Best Practices +12. Error Handling Standards +13. Documentation Requirements +14. Compliance and Monitoring + +--- + +## 1. Server Naming Conventions + +Follow these standardized naming patterns for MCP servers: + +**Python**: Use format `{service}_mcp` (lowercase with underscores) +- Examples: `slack_mcp`, `github_mcp`, `jira_mcp`, `stripe_mcp` + +**Node/TypeScript**: Use format `{service}-mcp-server` (lowercase with hyphens) +- Examples: `slack-mcp-server`, `github-mcp-server`, `jira-mcp-server` + +The name should be: +- General (not tied to specific features) +- Descriptive of the service/API being integrated +- Easy to infer from the task description +- Without version numbers or dates + +--- + +## 2. Tool Naming and Design + +### Tool Naming Best Practices + +1. **Use snake_case**: `search_users`, `create_project`, `get_channel_info` +2. **Include service prefix**: Anticipate that your MCP server may be used alongside other MCP servers + - Use `slack_send_message` instead of just `send_message` + - Use `github_create_issue` instead of just `create_issue` + - Use `asana_list_tasks` instead of just `list_tasks` +3. **Be action-oriented**: Start with verbs (get, list, search, create, etc.) +4. **Be specific**: Avoid generic names that could conflict with other servers +5. **Maintain consistency**: Use consistent naming patterns within your server + +### Tool Design Guidelines + +- Tool descriptions must narrowly and unambiguously describe functionality +- Descriptions must precisely match actual functionality +- Should not create confusion with other MCP servers +- Should provide tool annotations (readOnlyHint, destructiveHint, idempotentHint, openWorldHint) +- Keep tool operations focused and atomic + +--- + +## 3. Response Format Guidelines + +All tools that return data should support multiple formats for flexibility: + +### JSON Format (`response_format="json"`) +- Machine-readable structured data +- Include all available fields and metadata +- Consistent field names and types +- Suitable for programmatic processing +- Use for when LLMs need to process data further + +### Markdown Format (`response_format="markdown"`, typically default) +- Human-readable formatted text +- Use headers, lists, and formatting for clarity +- Convert timestamps to human-readable format (e.g., "2024-01-15 10:30:00 UTC" instead of epoch) +- Show display names with IDs in parentheses (e.g., "@john.doe (U123456)") +- Omit verbose metadata (e.g., show only one profile image URL, not all sizes) +- Group related information logically +- Use for when presenting information to users + +--- + +## 4. Pagination Best Practices + +For tools that list resources: + +- **Always respect the `limit` parameter**: Never load all results when a limit is specified +- **Implement pagination**: Use `offset` or cursor-based pagination +- **Return pagination metadata**: Include `has_more`, `next_offset`/`next_cursor`, `total_count` +- **Never load all results into memory**: Especially important for large datasets +- **Default to reasonable limits**: 20-50 items is typical +- **Include clear pagination info in responses**: Make it easy for LLMs to request more data + +Example pagination response structure: +```json +{ + "total": 150, + "count": 20, + "offset": 0, + "items": [...], + "has_more": true, + "next_offset": 20 +} +``` + +--- + +## 5. Character Limits and Truncation + +To prevent overwhelming responses with too much data: + +- **Define CHARACTER_LIMIT constant**: Typically 25,000 characters at module level +- **Check response size before returning**: Measure the final response length +- **Truncate gracefully with clear indicators**: Let the LLM know data was truncated +- **Provide guidance on filtering**: Suggest how to use parameters to reduce results +- **Include truncation metadata**: Show what was truncated and how to get more + +Example truncation handling: +```python +CHARACTER_LIMIT = 25000 + +if len(result) > CHARACTER_LIMIT: + truncated_data = data[:max(1, len(data) // 2)] + response["truncated"] = True + response["truncation_message"] = ( + f"Response truncated from {len(data)} to {len(truncated_data)} items. " + f"Use 'offset' parameter or add filters to see more results." + ) +``` + +--- + +## 6. Transport Options + +MCP servers support multiple transport mechanisms for different deployment scenarios: + +### Stdio Transport + +**Best for**: Command-line tools, local integrations, subprocess execution + +**Characteristics**: +- Standard input/output stream communication +- Simple setup, no network configuration needed +- Runs as a subprocess of the client +- Ideal for desktop applications and CLI tools + +**Use when**: +- Building tools for local development environments +- Integrating with desktop applications (e.g., Claude Desktop) +- Creating command-line utilities +- Single-user, single-session scenarios + +### HTTP Transport + +**Best for**: Web services, remote access, multi-client scenarios + +**Characteristics**: +- Request-response pattern over HTTP +- Supports multiple simultaneous clients +- Can be deployed as a web service +- Requires network configuration and security considerations + +**Use when**: +- Serving multiple clients simultaneously +- Deploying as a cloud service +- Integration with web applications +- Need for load balancing or scaling + +### Server-Sent Events (SSE) Transport + +**Best for**: Real-time updates, push notifications, streaming data + +**Characteristics**: +- One-way server-to-client streaming over HTTP +- Enables real-time updates without polling +- Long-lived connections for continuous data flow +- Built on standard HTTP infrastructure + +**Use when**: +- Clients need real-time data updates +- Implementing push notifications +- Streaming logs or monitoring data +- Progressive result delivery for long operations + +### Transport Selection Criteria + +| Criterion | Stdio | HTTP | SSE | +|-----------|-------|------|-----| +| **Deployment** | Local | Remote | Remote | +| **Clients** | Single | Multiple | Multiple | +| **Communication** | Bidirectional | Request-Response | Server-Push | +| **Complexity** | Low | Medium | Medium-High | +| **Real-time** | No | No | Yes | + +--- + +## 7. Tool Development Best Practices + +### General Guidelines +1. Tool names should be descriptive and action-oriented +2. Use parameter validation with detailed JSON schemas +3. Include examples in tool descriptions +4. Implement proper error handling and validation +5. Use progress reporting for long operations +6. Keep tool operations focused and atomic +7. Document expected return value structures +8. Implement proper timeouts +9. Consider rate limiting for resource-intensive operations +10. Log tool usage for debugging and monitoring + +### Security Considerations for Tools + +#### Input Validation +- Validate all parameters against schema +- Sanitize file paths and system commands +- Validate URLs and external identifiers +- Check parameter sizes and ranges +- Prevent command injection + +#### Access Control +- Implement authentication where needed +- Use appropriate authorization checks +- Audit tool usage +- Rate limit requests +- Monitor for abuse + +#### Error Handling +- Don't expose internal errors to clients +- Log security-relevant errors +- Handle timeouts appropriately +- Clean up resources after errors +- Validate return values + +### Tool Annotations +- Provide readOnlyHint and destructiveHint annotations +- Remember annotations are hints, not security guarantees +- Clients should not make security-critical decisions based solely on annotations + +--- + +## 8. Transport Best Practices + +### General Transport Guidelines +1. Handle connection lifecycle properly +2. Implement proper error handling +3. Use appropriate timeout values +4. Implement connection state management +5. Clean up resources on disconnection + +### Security Best Practices for Transport +- Follow security considerations for DNS rebinding attacks +- Implement proper authentication mechanisms +- Validate message formats +- Handle malformed messages gracefully + +### Stdio Transport Specific +- Local MCP servers should NOT log to stdout (interferes with protocol) +- Use stderr for logging messages +- Handle standard I/O streams properly + +--- + +## 9. Testing Requirements + +A comprehensive testing strategy should cover: + +### Functional Testing +- Verify correct execution with valid/invalid inputs + +### Integration Testing +- Test interaction with external systems + +### Security Testing +- Validate auth, input sanitization, rate limiting + +### Performance Testing +- Check behavior under load, timeouts + +### Error Handling +- Ensure proper error reporting and cleanup + +--- + +## 10. OAuth and Security Best Practices + +### Authentication and Authorization + +MCP servers that connect to external services should implement proper authentication: + +**OAuth 2.1 Implementation:** +- Use secure OAuth 2.1 with certificates from recognized authorities +- Validate access tokens before processing requests +- Only accept tokens specifically intended for your server +- Reject tokens without proper audience claims +- Never pass through tokens received from MCP clients + +**API Key Management:** +- Store API keys in environment variables, never in code +- Validate keys on server startup +- Provide clear error messages when authentication fails +- Use secure transmission for sensitive credentials + +### Input Validation and Security + +**Always validate inputs:** +- Sanitize file paths to prevent directory traversal +- Validate URLs and external identifiers +- Check parameter sizes and ranges +- Prevent command injection in system calls +- Use schema validation (Pydantic/Zod) for all inputs + +**Error handling security:** +- Don't expose internal errors to clients +- Log security-relevant errors server-side +- Provide helpful but not revealing error messages +- Clean up resources after errors + +### Privacy and Data Protection + +**Data collection principles:** +- Only collect data strictly necessary for functionality +- Don't collect extraneous conversation data +- Don't collect PII unless explicitly required for the tool's purpose +- Provide clear information about what data is accessed + +**Data transmission:** +- Don't send data to servers outside your organization without disclosure +- Use secure transmission (HTTPS) for all network communication +- Validate certificates for external services + +--- + +## 11. Resource Management Best Practices + +1. Only suggest necessary resources +2. Use clear, descriptive names for roots +3. Handle resource boundaries properly +4. Respect client control over resources +5. Use model-controlled primitives (tools) for automatic data exposure + +--- + +## 12. Prompt Management Best Practices + +- Clients should show users proposed prompts +- Users should be able to modify or reject prompts +- Clients should show users completions +- Users should be able to modify or reject completions +- Consider costs when using sampling + +--- + +## 13. Error Handling Standards + +- Use standard JSON-RPC error codes +- Report tool errors within result objects (not protocol-level) +- Provide helpful, specific error messages +- Don't expose internal implementation details +- Clean up resources properly on errors + +--- + +## 14. Documentation Requirements + +- Provide clear documentation of all tools and capabilities +- Include working examples (at least 3 per major feature) +- Document security considerations +- Specify required permissions and access levels +- Document rate limits and performance characteristics + +--- + +## 15. Compliance and Monitoring + +- Implement logging for debugging and monitoring +- Track tool usage patterns +- Monitor for potential abuse +- Maintain audit trails for security-relevant operations +- Be prepared for ongoing compliance reviews + +--- + +## Summary + +These best practices represent the comprehensive guidelines for building secure, efficient, and compliant MCP servers that work well within the ecosystem. Developers should follow these guidelines to ensure their MCP servers meet the standards for inclusion in the MCP directory and provide a safe, reliable experience for users. + + +---------- + + +# Tools + +> Enable LLMs to perform actions through your server + +Tools are a powerful primitive in the Model Context Protocol (MCP) that enable servers to expose executable functionality to clients. Through tools, LLMs can interact with external systems, perform computations, and take actions in the real world. + + + Tools are designed to be **model-controlled**, meaning that tools are exposed from servers to clients with the intention of the AI model being able to automatically invoke them (with a human in the loop to grant approval). + + +## Overview + +Tools in MCP allow servers to expose executable functions that can be invoked by clients and used by LLMs to perform actions. Key aspects of tools include: + +* **Discovery**: Clients can obtain a list of available tools by sending a `tools/list` request +* **Invocation**: Tools are called using the `tools/call` request, where servers perform the requested operation and return results +* **Flexibility**: Tools can range from simple calculations to complex API interactions + +Like [resources](/docs/concepts/resources), tools are identified by unique names and can include descriptions to guide their usage. However, unlike resources, tools represent dynamic operations that can modify state or interact with external systems. + +## Tool definition structure + +Each tool is defined with the following structure: + +```typescript +{ + name: string; // Unique identifier for the tool + description?: string; // Human-readable description + inputSchema: { // JSON Schema for the tool's parameters + type: "object", + properties: { ... } // Tool-specific parameters + }, + annotations?: { // Optional hints about tool behavior + title?: string; // Human-readable title for the tool + readOnlyHint?: boolean; // If true, the tool does not modify its environment + destructiveHint?: boolean; // If true, the tool may perform destructive updates + idempotentHint?: boolean; // If true, repeated calls with same args have no additional effect + openWorldHint?: boolean; // If true, tool interacts with external entities + } +} +``` + +## Implementing tools + +Here's an example of implementing a basic tool in an MCP server: + + + + ```typescript + const server = new Server({ + name: "example-server", + version: "1.0.0" + }, { + capabilities: { + tools: {} + } + }); + + // Define available tools + server.setRequestHandler(ListToolsRequestSchema, async () => { + return { + tools: [{ + name: "calculate_sum", + description: "Add two numbers together", + inputSchema: { + type: "object", + properties: { + a: { type: "number" }, + b: { type: "number" } + }, + required: ["a", "b"] + } + }] + }; + }); + + // Handle tool execution + server.setRequestHandler(CallToolRequestSchema, async (request) => { + if (request.params.name === "calculate_sum") { + const { a, b } = request.params.arguments; + return { + content: [ + { + type: "text", + text: String(a + b) + } + ] + }; + } + throw new Error("Tool not found"); + }); + ``` + + + + ```python + app = Server("example-server") + + @app.list_tools() + async def list_tools() -> list[types.Tool]: + return [ + types.Tool( + name="calculate_sum", + description="Add two numbers together", + inputSchema={ + "type": "object", + "properties": { + "a": {"type": "number"}, + "b": {"type": "number"} + }, + "required": ["a", "b"] + } + ) + ] + + @app.call_tool() + async def call_tool( + name: str, + arguments: dict + ) -> list[types.TextContent | types.ImageContent | types.EmbeddedResource]: + if name == "calculate_sum": + a = arguments["a"] + b = arguments["b"] + result = a + b + return [types.TextContent(type="text", text=str(result))] + raise ValueError(f"Tool not found: {name}") + ``` + + + +## Example tool patterns + +Here are some examples of types of tools that a server could provide: + +### System operations + +Tools that interact with the local system: + +```typescript +{ + name: "execute_command", + description: "Run a shell command", + inputSchema: { + type: "object", + properties: { + command: { type: "string" }, + args: { type: "array", items: { type: "string" } } + } + } +} +``` + +### API integrations + +Tools that wrap external APIs: + +```typescript +{ + name: "github_create_issue", + description: "Create a GitHub issue", + inputSchema: { + type: "object", + properties: { + title: { type: "string" }, + body: { type: "string" }, + labels: { type: "array", items: { type: "string" } } + } + } +} +``` + +### Data processing + +Tools that transform or analyze data: + +```typescript +{ + name: "analyze_csv", + description: "Analyze a CSV file", + inputSchema: { + type: "object", + properties: { + filepath: { type: "string" }, + operations: { + type: "array", + items: { + enum: ["sum", "average", "count"] + } + } + } + } +} +``` + +## Best practices + +When implementing tools: + +1. Provide clear, descriptive names and descriptions +2. Use detailed JSON Schema definitions for parameters +3. Include examples in tool descriptions to demonstrate how the model should use them +4. Implement proper error handling and validation +5. Use progress reporting for long operations +6. Keep tool operations focused and atomic +7. Document expected return value structures +8. Implement proper timeouts +9. Consider rate limiting for resource-intensive operations +10. Log tool usage for debugging and monitoring + +### Tool name conflicts + +MCP client applications and MCP server proxies may encounter tool name conflicts when building their own tool lists. For example, two connected MCP servers `web1` and `web2` may both expose a tool named `search_web`. + +Applications may disambiguiate tools with one of the following strategies (among others; not an exhaustive list): + +* Concatenating a unique, user-defined server name with the tool name, e.g. `web1___search_web` and `web2___search_web`. This strategy may be preferable when unique server names are already provided by the user in a configuration file. +* Generating a random prefix for the tool name, e.g. `jrwxs___search_web` and `6cq52___search_web`. This strategy may be preferable in server proxies where user-defined unique names are not available. +* Using the server URI as a prefix for the tool name, e.g. `web1.example.com:search_web` and `web2.example.com:search_web`. This strategy may be suitable when working with remote MCP servers. + +Note that the server-provided name from the initialization flow is not guaranteed to be unique and is not generally suitable for disambiguation purposes. + +## Security considerations + +When exposing tools: + +### Input validation + +* Validate all parameters against the schema +* Sanitize file paths and system commands +* Validate URLs and external identifiers +* Check parameter sizes and ranges +* Prevent command injection + +### Access control + +* Implement authentication where needed +* Use appropriate authorization checks +* Audit tool usage +* Rate limit requests +* Monitor for abuse + +### Error handling + +* Don't expose internal errors to clients +* Log security-relevant errors +* Handle timeouts appropriately +* Clean up resources after errors +* Validate return values + +## Tool discovery and updates + +MCP supports dynamic tool discovery: + +1. Clients can list available tools at any time +2. Servers can notify clients when tools change using `notifications/tools/list_changed` +3. Tools can be added or removed during runtime +4. Tool definitions can be updated (though this should be done carefully) + +## Error handling + +Tool errors should be reported within the result object, not as MCP protocol-level errors. This allows the LLM to see and potentially handle the error. When a tool encounters an error: + +1. Set `isError` to `true` in the result +2. Include error details in the `content` array + +Here's an example of proper error handling for tools: + + + + ```typescript + try { + // Tool operation + const result = performOperation(); + return { + content: [ + { + type: "text", + text: `Operation successful: ${result}` + } + ] + }; + } catch (error) { + return { + isError: true, + content: [ + { + type: "text", + text: `Error: ${error.message}` + } + ] + }; + } + ``` + + + + ```python + try: + # Tool operation + result = perform_operation() + return types.CallToolResult( + content=[ + types.TextContent( + type="text", + text=f"Operation successful: {result}" + ) + ] + ) + except Exception as error: + return types.CallToolResult( + isError=True, + content=[ + types.TextContent( + type="text", + text=f"Error: {str(error)}" + ) + ] + ) + ``` + + + +This approach allows the LLM to see that an error occurred and potentially take corrective action or request human intervention. + +## Tool annotations + +Tool annotations provide additional metadata about a tool's behavior, helping clients understand how to present and manage tools. These annotations are hints that describe the nature and impact of a tool, but should not be relied upon for security decisions. + +### Purpose of tool annotations + +Tool annotations serve several key purposes: + +1. Provide UX-specific information without affecting model context +2. Help clients categorize and present tools appropriately +3. Convey information about a tool's potential side effects +4. Assist in developing intuitive interfaces for tool approval + +### Available tool annotations + +The MCP specification defines the following annotations for tools: + +| Annotation | Type | Default | Description | +| ----------------- | ------- | ------- | ------------------------------------------------------------------------------------------------------------------------------------ | +| `title` | string | - | A human-readable title for the tool, useful for UI display | +| `readOnlyHint` | boolean | false | If true, indicates the tool does not modify its environment | +| `destructiveHint` | boolean | true | If true, the tool may perform destructive updates (only meaningful when `readOnlyHint` is false) | +| `idempotentHint` | boolean | false | If true, calling the tool repeatedly with the same arguments has no additional effect (only meaningful when `readOnlyHint` is false) | +| `openWorldHint` | boolean | true | If true, the tool may interact with an "open world" of external entities | + +### Example usage + +Here's how to define tools with annotations for different scenarios: + +```typescript +// A read-only search tool +{ + name: "web_search", + description: "Search the web for information", + inputSchema: { + type: "object", + properties: { + query: { type: "string" } + }, + required: ["query"] + }, + annotations: { + title: "Web Search", + readOnlyHint: true, + openWorldHint: true + } +} + +// A destructive file deletion tool +{ + name: "delete_file", + description: "Delete a file from the filesystem", + inputSchema: { + type: "object", + properties: { + path: { type: "string" } + }, + required: ["path"] + }, + annotations: { + title: "Delete File", + readOnlyHint: false, + destructiveHint: true, + idempotentHint: true, + openWorldHint: false + } +} + +// A non-destructive database record creation tool +{ + name: "create_record", + description: "Create a new record in the database", + inputSchema: { + type: "object", + properties: { + table: { type: "string" }, + data: { type: "object" } + }, + required: ["table", "data"] + }, + annotations: { + title: "Create Database Record", + readOnlyHint: false, + destructiveHint: false, + idempotentHint: false, + openWorldHint: false + } +} +``` + +### Integrating annotations in server implementation + + + + ```typescript + server.setRequestHandler(ListToolsRequestSchema, async () => { + return { + tools: [{ + name: "calculate_sum", + description: "Add two numbers together", + inputSchema: { + type: "object", + properties: { + a: { type: "number" }, + b: { type: "number" } + }, + required: ["a", "b"] + }, + annotations: { + title: "Calculate Sum", + readOnlyHint: true, + openWorldHint: false + } + }] + }; + }); + ``` + + + + ```python + from mcp.server.fastmcp import FastMCP + + mcp = FastMCP("example-server") + + @mcp.tool( + annotations={ + "title": "Calculate Sum", + "readOnlyHint": True, + "openWorldHint": False + } + ) + async def calculate_sum(a: float, b: float) -> str: + """Add two numbers together. + + Args: + a: First number to add + b: Second number to add + """ + result = a + b + return str(result) + ``` + + + +### Best practices for tool annotations + +1. **Be accurate about side effects**: Clearly indicate whether a tool modifies its environment and whether those modifications are destructive. + +2. **Use descriptive titles**: Provide human-friendly titles that clearly describe the tool's purpose. + +3. **Indicate idempotency properly**: Mark tools as idempotent only if repeated calls with the same arguments truly have no additional effect. + +4. **Set appropriate open/closed world hints**: Indicate whether a tool interacts with a closed system (like a database) or an open system (like the web). + +5. **Remember annotations are hints**: All properties in ToolAnnotations are hints and not guaranteed to provide a faithful description of tool behavior. Clients should never make security-critical decisions based solely on annotations. + +## Testing tools + +A comprehensive testing strategy for MCP tools should cover: + +* **Functional testing**: Verify tools execute correctly with valid inputs and handle invalid inputs appropriately +* **Integration testing**: Test tool interaction with external systems using both real and mocked dependencies +* **Security testing**: Validate authentication, authorization, input sanitization, and rate limiting +* **Performance testing**: Check behavior under load, timeout handling, and resource cleanup +* **Error handling**: Ensure tools properly report errors through the MCP protocol and clean up resources diff --git a/reference/node_mcp_server.md b/reference/node_mcp_server.md new file mode 100644 index 0000000..e66a35b --- /dev/null +++ b/reference/node_mcp_server.md @@ -0,0 +1,916 @@ +# Node/TypeScript MCP Server Implementation Guide + +## Overview + +This document provides Node/TypeScript-specific best practices and examples for implementing MCP servers using the MCP TypeScript SDK. It covers project structure, server setup, tool registration patterns, input validation with Zod, error handling, and complete working examples. + +--- + +## Quick Reference + +### Key Imports +```typescript +import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js"; +import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js"; +import { z } from "zod"; +import axios, { AxiosError } from "axios"; +``` + +### Server Initialization +```typescript +const server = new McpServer({ + name: "service-mcp-server", + version: "1.0.0" +}); +``` + +### Tool Registration Pattern +```typescript +server.registerTool("tool_name", {...config}, async (params) => { + // Implementation +}); +``` + +--- + +## MCP TypeScript SDK + +The official MCP TypeScript SDK provides: +- `McpServer` class for server initialization +- `registerTool` method for tool registration +- Zod schema integration for runtime input validation +- Type-safe tool handler implementations + +See the MCP SDK documentation in the references for complete details. + +## Server Naming Convention + +Node/TypeScript MCP servers must follow this naming pattern: +- **Format**: `{service}-mcp-server` (lowercase with hyphens) +- **Examples**: `github-mcp-server`, `jira-mcp-server`, `stripe-mcp-server` + +The name should be: +- General (not tied to specific features) +- Descriptive of the service/API being integrated +- Easy to infer from the task description +- Without version numbers or dates + +## Project Structure + +Create the following structure for Node/TypeScript MCP servers: + +``` +{service}-mcp-server/ +ā”œā”€ā”€ package.json +ā”œā”€ā”€ tsconfig.json +ā”œā”€ā”€ README.md +ā”œā”€ā”€ src/ +│ ā”œā”€ā”€ index.ts # Main entry point with McpServer initialization +│ ā”œā”€ā”€ types.ts # TypeScript type definitions and interfaces +│ ā”œā”€ā”€ tools/ # Tool implementations (one file per domain) +│ ā”œā”€ā”€ services/ # API clients and shared utilities +│ ā”œā”€ā”€ schemas/ # Zod validation schemas +│ └── constants.ts # Shared constants (API_URL, CHARACTER_LIMIT, etc.) +└── dist/ # Built JavaScript files (entry point: dist/index.js) +``` + +## Tool Implementation + +### Tool Naming + +Use snake_case for tool names (e.g., "search_users", "create_project", "get_channel_info") with clear, action-oriented names. + +**Avoid Naming Conflicts**: Include the service context to prevent overlaps: +- Use "slack_send_message" instead of just "send_message" +- Use "github_create_issue" instead of just "create_issue" +- Use "asana_list_tasks" instead of just "list_tasks" + +### Tool Structure + +Tools are registered using the `registerTool` method with the following requirements: +- Use Zod schemas for runtime input validation and type safety +- The `description` field must be explicitly provided - JSDoc comments are NOT automatically extracted +- Explicitly provide `title`, `description`, `inputSchema`, and `annotations` +- The `inputSchema` must be a Zod schema object (not a JSON schema) +- Type all parameters and return values explicitly + +```typescript +import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js"; +import { z } from "zod"; + +const server = new McpServer({ + name: "example-mcp", + version: "1.0.0" +}); + +// Zod schema for input validation +const UserSearchInputSchema = z.object({ + query: z.string() + .min(2, "Query must be at least 2 characters") + .max(200, "Query must not exceed 200 characters") + .describe("Search string to match against names/emails"), + limit: z.number() + .int() + .min(1) + .max(100) + .default(20) + .describe("Maximum results to return"), + offset: z.number() + .int() + .min(0) + .default(0) + .describe("Number of results to skip for pagination"), + response_format: z.nativeEnum(ResponseFormat) + .default(ResponseFormat.MARKDOWN) + .describe("Output format: 'markdown' for human-readable or 'json' for machine-readable") +}).strict(); + +// Type definition from Zod schema +type UserSearchInput = z.infer; + +server.registerTool( + "example_search_users", + { + title: "Search Example Users", + description: `Search for users in the Example system by name, email, or team. + +This tool searches across all user profiles in the Example platform, supporting partial matches and various search filters. It does NOT create or modify users, only searches existing ones. + +Args: + - query (string): Search string to match against names/emails + - limit (number): Maximum results to return, between 1-100 (default: 20) + - offset (number): Number of results to skip for pagination (default: 0) + - response_format ('markdown' | 'json'): Output format (default: 'markdown') + +Returns: + For JSON format: Structured data with schema: + { + "total": number, // Total number of matches found + "count": number, // Number of results in this response + "offset": number, // Current pagination offset + "users": [ + { + "id": string, // User ID (e.g., "U123456789") + "name": string, // Full name (e.g., "John Doe") + "email": string, // Email address + "team": string, // Team name (optional) + "active": boolean // Whether user is active + } + ], + "has_more": boolean, // Whether more results are available + "next_offset": number // Offset for next page (if has_more is true) + } + +Examples: + - Use when: "Find all marketing team members" -> params with query="team:marketing" + - Use when: "Search for John's account" -> params with query="john" + - Don't use when: You need to create a user (use example_create_user instead) + +Error Handling: + - Returns "Error: Rate limit exceeded" if too many requests (429 status) + - Returns "No users found matching ''" if search returns empty`, + inputSchema: UserSearchInputSchema, + annotations: { + readOnlyHint: true, + destructiveHint: false, + idempotentHint: true, + openWorldHint: true + } + }, + async (params: UserSearchInput) => { + try { + // Input validation is handled by Zod schema + // Make API request using validated parameters + const data = await makeApiRequest( + "users/search", + "GET", + undefined, + { + q: params.query, + limit: params.limit, + offset: params.offset + } + ); + + const users = data.users || []; + const total = data.total || 0; + + if (!users.length) { + return { + content: [{ + type: "text", + text: `No users found matching '${params.query}'` + }] + }; + } + + // Format response based on requested format + let result: string; + + if (params.response_format === ResponseFormat.MARKDOWN) { + // Human-readable markdown format + const lines: string[] = [`# User Search Results: '${params.query}'`, ""]; + lines.push(`Found ${total} users (showing ${users.length})`); + lines.push(""); + + for (const user of users) { + lines.push(`## ${user.name} (${user.id})`); + lines.push(`- **Email**: ${user.email}`); + if (user.team) { + lines.push(`- **Team**: ${user.team}`); + } + lines.push(""); + } + + result = lines.join("\n"); + + } else { + // Machine-readable JSON format + const response: any = { + total, + count: users.length, + offset: params.offset, + users: users.map((user: any) => ({ + id: user.id, + name: user.name, + email: user.email, + ...(user.team ? { team: user.team } : {}), + active: user.active ?? true + })) + }; + + // Add pagination info if there are more results + if (total > params.offset + users.length) { + response.has_more = true; + response.next_offset = params.offset + users.length; + } + + result = JSON.stringify(response, null, 2); + } + + return { + content: [{ + type: "text", + text: result + }] + }; + } catch (error) { + return { + content: [{ + type: "text", + text: handleApiError(error) + }] + }; + } + } +); +``` + +## Zod Schemas for Input Validation + +Zod provides runtime type validation: + +```typescript +import { z } from "zod"; + +// Basic schema with validation +const CreateUserSchema = z.object({ + name: z.string() + .min(1, "Name is required") + .max(100, "Name must not exceed 100 characters"), + email: z.string() + .email("Invalid email format"), + age: z.number() + .int("Age must be a whole number") + .min(0, "Age cannot be negative") + .max(150, "Age cannot be greater than 150") +}).strict(); // Use .strict() to forbid extra fields + +// Enums +enum ResponseFormat { + MARKDOWN = "markdown", + JSON = "json" +} + +const SearchSchema = z.object({ + response_format: z.nativeEnum(ResponseFormat) + .default(ResponseFormat.MARKDOWN) + .describe("Output format") +}); + +// Optional fields with defaults +const PaginationSchema = z.object({ + limit: z.number() + .int() + .min(1) + .max(100) + .default(20) + .describe("Maximum results to return"), + offset: z.number() + .int() + .min(0) + .default(0) + .describe("Number of results to skip") +}); +``` + +## Response Format Options + +Support multiple output formats for flexibility: + +```typescript +enum ResponseFormat { + MARKDOWN = "markdown", + JSON = "json" +} + +const inputSchema = z.object({ + query: z.string(), + response_format: z.nativeEnum(ResponseFormat) + .default(ResponseFormat.MARKDOWN) + .describe("Output format: 'markdown' for human-readable or 'json' for machine-readable") +}); +``` + +**Markdown format**: +- Use headers, lists, and formatting for clarity +- Convert timestamps to human-readable format +- Show display names with IDs in parentheses +- Omit verbose metadata +- Group related information logically + +**JSON format**: +- Return complete, structured data suitable for programmatic processing +- Include all available fields and metadata +- Use consistent field names and types + +## Pagination Implementation + +For tools that list resources: + +```typescript +const ListSchema = z.object({ + limit: z.number().int().min(1).max(100).default(20), + offset: z.number().int().min(0).default(0) +}); + +async function listItems(params: z.infer) { + const data = await apiRequest(params.limit, params.offset); + + const response = { + total: data.total, + count: data.items.length, + offset: params.offset, + items: data.items, + has_more: data.total > params.offset + data.items.length, + next_offset: data.total > params.offset + data.items.length + ? params.offset + data.items.length + : undefined + }; + + return JSON.stringify(response, null, 2); +} +``` + +## Character Limits and Truncation + +Add a CHARACTER_LIMIT constant to prevent overwhelming responses: + +```typescript +// At module level in constants.ts +export const CHARACTER_LIMIT = 25000; // Maximum response size in characters + +async function searchTool(params: SearchInput) { + let result = generateResponse(data); + + // Check character limit and truncate if needed + if (result.length > CHARACTER_LIMIT) { + const truncatedData = data.slice(0, Math.max(1, data.length / 2)); + response.data = truncatedData; + response.truncated = true; + response.truncation_message = + `Response truncated from ${data.length} to ${truncatedData.length} items. ` + + `Use 'offset' parameter or add filters to see more results.`; + result = JSON.stringify(response, null, 2); + } + + return result; +} +``` + +## Error Handling + +Provide clear, actionable error messages: + +```typescript +import axios, { AxiosError } from "axios"; + +function handleApiError(error: unknown): string { + if (error instanceof AxiosError) { + if (error.response) { + switch (error.response.status) { + case 404: + return "Error: Resource not found. Please check the ID is correct."; + case 403: + return "Error: Permission denied. You don't have access to this resource."; + case 429: + return "Error: Rate limit exceeded. Please wait before making more requests."; + default: + return `Error: API request failed with status ${error.response.status}`; + } + } else if (error.code === "ECONNABORTED") { + return "Error: Request timed out. Please try again."; + } + } + return `Error: Unexpected error occurred: ${error instanceof Error ? error.message : String(error)}`; +} +``` + +## Shared Utilities + +Extract common functionality into reusable functions: + +```typescript +// Shared API request function +async function makeApiRequest( + endpoint: string, + method: "GET" | "POST" | "PUT" | "DELETE" = "GET", + data?: any, + params?: any +): Promise { + try { + const response = await axios({ + method, + url: `${API_BASE_URL}/${endpoint}`, + data, + params, + timeout: 30000, + headers: { + "Content-Type": "application/json", + "Accept": "application/json" + } + }); + return response.data; + } catch (error) { + throw error; + } +} +``` + +## Async/Await Best Practices + +Always use async/await for network requests and I/O operations: + +```typescript +// Good: Async network request +async function fetchData(resourceId: string): Promise { + const response = await axios.get(`${API_URL}/resource/${resourceId}`); + return response.data; +} + +// Bad: Promise chains +function fetchData(resourceId: string): Promise { + return axios.get(`${API_URL}/resource/${resourceId}`) + .then(response => response.data); // Harder to read and maintain +} +``` + +## TypeScript Best Practices + +1. **Use Strict TypeScript**: Enable strict mode in tsconfig.json +2. **Define Interfaces**: Create clear interface definitions for all data structures +3. **Avoid `any`**: Use proper types or `unknown` instead of `any` +4. **Zod for Runtime Validation**: Use Zod schemas to validate external data +5. **Type Guards**: Create type guard functions for complex type checking +6. **Error Handling**: Always use try-catch with proper error type checking +7. **Null Safety**: Use optional chaining (`?.`) and nullish coalescing (`??`) + +```typescript +// Good: Type-safe with Zod and interfaces +interface UserResponse { + id: string; + name: string; + email: string; + team?: string; + active: boolean; +} + +const UserSchema = z.object({ + id: z.string(), + name: z.string(), + email: z.string().email(), + team: z.string().optional(), + active: z.boolean() +}); + +type User = z.infer; + +async function getUser(id: string): Promise { + const data = await apiCall(`/users/${id}`); + return UserSchema.parse(data); // Runtime validation +} + +// Bad: Using any +async function getUser(id: string): Promise { + return await apiCall(`/users/${id}`); // No type safety +} +``` + +## Package Configuration + +### package.json + +```json +{ + "name": "{service}-mcp-server", + "version": "1.0.0", + "description": "MCP server for {Service} API integration", + "type": "module", + "main": "dist/index.js", + "scripts": { + "start": "node dist/index.js", + "dev": "tsx watch src/index.ts", + "build": "tsc", + "clean": "rm -rf dist" + }, + "engines": { + "node": ">=18" + }, + "dependencies": { + "@modelcontextprotocol/sdk": "^1.6.1", + "axios": "^1.7.9", + "zod": "^3.23.8" + }, + "devDependencies": { + "@types/node": "^22.10.0", + "tsx": "^4.19.2", + "typescript": "^5.7.2" + } +} +``` + +### tsconfig.json + +```json +{ + "compilerOptions": { + "target": "ES2022", + "module": "Node16", + "moduleResolution": "Node16", + "lib": ["ES2022"], + "outDir": "./dist", + "rootDir": "./src", + "strict": true, + "esModuleInterop": true, + "skipLibCheck": true, + "forceConsistentCasingInFileNames": true, + "declaration": true, + "declarationMap": true, + "sourceMap": true, + "allowSyntheticDefaultImports": true + }, + "include": ["src/**/*"], + "exclude": ["node_modules", "dist"] +} +``` + +## Complete Example + +```typescript +#!/usr/bin/env node +/** + * MCP Server for Example Service. + * + * This server provides tools to interact with Example API, including user search, + * project management, and data export capabilities. + */ + +import { McpServer } from "@modelcontextprotocol/sdk/server/mcp.js"; +import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js"; +import { z } from "zod"; +import axios, { AxiosError } from "axios"; + +// Constants +const API_BASE_URL = "https://api.example.com/v1"; +const CHARACTER_LIMIT = 25000; + +// Enums +enum ResponseFormat { + MARKDOWN = "markdown", + JSON = "json" +} + +// Zod schemas +const UserSearchInputSchema = z.object({ + query: z.string() + .min(2, "Query must be at least 2 characters") + .max(200, "Query must not exceed 200 characters") + .describe("Search string to match against names/emails"), + limit: z.number() + .int() + .min(1) + .max(100) + .default(20) + .describe("Maximum results to return"), + offset: z.number() + .int() + .min(0) + .default(0) + .describe("Number of results to skip for pagination"), + response_format: z.nativeEnum(ResponseFormat) + .default(ResponseFormat.MARKDOWN) + .describe("Output format: 'markdown' for human-readable or 'json' for machine-readable") +}).strict(); + +type UserSearchInput = z.infer; + +// Shared utility functions +async function makeApiRequest( + endpoint: string, + method: "GET" | "POST" | "PUT" | "DELETE" = "GET", + data?: any, + params?: any +): Promise { + try { + const response = await axios({ + method, + url: `${API_BASE_URL}/${endpoint}`, + data, + params, + timeout: 30000, + headers: { + "Content-Type": "application/json", + "Accept": "application/json" + } + }); + return response.data; + } catch (error) { + throw error; + } +} + +function handleApiError(error: unknown): string { + if (error instanceof AxiosError) { + if (error.response) { + switch (error.response.status) { + case 404: + return "Error: Resource not found. Please check the ID is correct."; + case 403: + return "Error: Permission denied. You don't have access to this resource."; + case 429: + return "Error: Rate limit exceeded. Please wait before making more requests."; + default: + return `Error: API request failed with status ${error.response.status}`; + } + } else if (error.code === "ECONNABORTED") { + return "Error: Request timed out. Please try again."; + } + } + return `Error: Unexpected error occurred: ${error instanceof Error ? error.message : String(error)}`; +} + +// Create MCP server instance +const server = new McpServer({ + name: "example-mcp", + version: "1.0.0" +}); + +// Register tools +server.registerTool( + "example_search_users", + { + title: "Search Example Users", + description: `[Full description as shown above]`, + inputSchema: UserSearchInputSchema, + annotations: { + readOnlyHint: true, + destructiveHint: false, + idempotentHint: true, + openWorldHint: true + } + }, + async (params: UserSearchInput) => { + // Implementation as shown above + } +); + +// Main function +async function main() { + // Verify environment variables if needed + if (!process.env.EXAMPLE_API_KEY) { + console.error("ERROR: EXAMPLE_API_KEY environment variable is required"); + process.exit(1); + } + + // Create transport + const transport = new StdioServerTransport(); + + // Connect server to transport + await server.connect(transport); + + console.error("Example MCP server running via stdio"); +} + +// Run the server +main().catch((error) => { + console.error("Server error:", error); + process.exit(1); +}); +``` + +--- + +## Advanced MCP Features + +### Resource Registration + +Expose data as resources for efficient, URI-based access: + +```typescript +import { ResourceTemplate } from "@modelcontextprotocol/sdk/types.js"; + +// Register a resource with URI template +server.registerResource( + { + uri: "file://documents/{name}", + name: "Document Resource", + description: "Access documents by name", + mimeType: "text/plain" + }, + async (uri: string) => { + // Extract parameter from URI + const match = uri.match(/^file:\/\/documents\/(.+)$/); + if (!match) { + throw new Error("Invalid URI format"); + } + + const documentName = match[1]; + const content = await loadDocument(documentName); + + return { + contents: [{ + uri, + mimeType: "text/plain", + text: content + }] + }; + } +); + +// List available resources dynamically +server.registerResourceList(async () => { + const documents = await getAvailableDocuments(); + return { + resources: documents.map(doc => ({ + uri: `file://documents/${doc.name}`, + name: doc.name, + mimeType: "text/plain", + description: doc.description + })) + }; +}); +``` + +**When to use Resources vs Tools:** +- **Resources**: For data access with simple URI-based parameters +- **Tools**: For complex operations requiring validation and business logic +- **Resources**: When data is relatively static or template-based +- **Tools**: When operations have side effects or complex workflows + +### Multiple Transport Options + +The TypeScript SDK supports different transport mechanisms: + +```typescript +import { StdioServerTransport } from "@modelcontextprotocol/sdk/server/stdio.js"; +import { SSEServerTransport } from "@modelcontextprotocol/sdk/server/sse.js"; + +// Stdio transport (default - for CLI tools) +const stdioTransport = new StdioServerTransport(); +await server.connect(stdioTransport); + +// SSE transport (for real-time web updates) +const sseTransport = new SSEServerTransport("/message", response); +await server.connect(sseTransport); + +// HTTP transport (for web services) +// Configure based on your HTTP framework integration +``` + +**Transport selection guide:** +- **Stdio**: Command-line tools, subprocess integration, local development +- **HTTP**: Web services, remote access, multiple simultaneous clients +- **SSE**: Real-time updates, server-push notifications, web dashboards + +### Notification Support + +Notify clients when server state changes: + +```typescript +// Notify when tools list changes +server.notification({ + method: "notifications/tools/list_changed" +}); + +// Notify when resources change +server.notification({ + method: "notifications/resources/list_changed" +}); +``` + +Use notifications sparingly - only when server capabilities genuinely change. + +--- + +## Code Best Practices + +### Code Composability and Reusability + +Your implementation MUST prioritize composability and code reuse: + +1. **Extract Common Functionality**: + - Create reusable helper functions for operations used across multiple tools + - Build shared API clients for HTTP requests instead of duplicating code + - Centralize error handling logic in utility functions + - Extract business logic into dedicated functions that can be composed + - Extract shared markdown or JSON field selection & formatting functionality + +2. **Avoid Duplication**: + - NEVER copy-paste similar code between tools + - If you find yourself writing similar logic twice, extract it into a function + - Common operations like pagination, filtering, field selection, and formatting should be shared + - Authentication/authorization logic should be centralized + +## Building and Running + +Always build your TypeScript code before running: + +```bash +# Build the project +npm run build + +# Run the server +npm start + +# Development with auto-reload +npm run dev +``` + +Always ensure `npm run build` completes successfully before considering the implementation complete. + +## Quality Checklist + +Before finalizing your Node/TypeScript MCP server implementation, ensure: + +### Strategic Design +- [ ] Tools enable complete workflows, not just API endpoint wrappers +- [ ] Tool names reflect natural task subdivisions +- [ ] Response formats optimize for agent context efficiency +- [ ] Human-readable identifiers used where appropriate +- [ ] Error messages guide agents toward correct usage + +### Implementation Quality +- [ ] FOCUSED IMPLEMENTATION: Most important and valuable tools implemented +- [ ] All tools registered using `registerTool` with complete configuration +- [ ] All tools include `title`, `description`, `inputSchema`, and `annotations` +- [ ] Annotations correctly set (readOnlyHint, destructiveHint, idempotentHint, openWorldHint) +- [ ] All tools use Zod schemas for runtime input validation with `.strict()` enforcement +- [ ] All Zod schemas have proper constraints and descriptive error messages +- [ ] All tools have comprehensive descriptions with explicit input/output types +- [ ] Descriptions include return value examples and complete schema documentation +- [ ] Error messages are clear, actionable, and educational + +### TypeScript Quality +- [ ] TypeScript interfaces are defined for all data structures +- [ ] Strict TypeScript is enabled in tsconfig.json +- [ ] No use of `any` type - use `unknown` or proper types instead +- [ ] All async functions have explicit Promise return types +- [ ] Error handling uses proper type guards (e.g., `axios.isAxiosError`, `z.ZodError`) + +### Advanced Features (where applicable) +- [ ] Resources registered for appropriate data endpoints +- [ ] Appropriate transport configured (stdio, HTTP, SSE) +- [ ] Notifications implemented for dynamic server capabilities +- [ ] Type-safe with SDK interfaces + +### Project Configuration +- [ ] Package.json includes all necessary dependencies +- [ ] Build script produces working JavaScript in dist/ directory +- [ ] Main entry point is properly configured as dist/index.js +- [ ] Server name follows format: `{service}-mcp-server` +- [ ] tsconfig.json properly configured with strict mode + +### Code Quality +- [ ] Pagination is properly implemented where applicable +- [ ] Large responses check CHARACTER_LIMIT constant and truncate with clear messages +- [ ] Filtering options are provided for potentially large result sets +- [ ] All network operations handle timeouts and connection errors gracefully +- [ ] Common functionality is extracted into reusable functions +- [ ] Return types are consistent across similar operations + +### Testing and Build +- [ ] `npm run build` completes successfully without errors +- [ ] dist/index.js created and executable +- [ ] Server runs: `node dist/index.js --help` +- [ ] All imports resolve correctly +- [ ] Sample tool calls work as expected \ No newline at end of file diff --git a/reference/python_mcp_server.md b/reference/python_mcp_server.md new file mode 100644 index 0000000..38fa3a1 --- /dev/null +++ b/reference/python_mcp_server.md @@ -0,0 +1,752 @@ +# Python MCP Server Implementation Guide + +## Overview + +This document provides Python-specific best practices and examples for implementing MCP servers using the MCP Python SDK. It covers server setup, tool registration patterns, input validation with Pydantic, error handling, and complete working examples. + +--- + +## Quick Reference + +### Key Imports +```python +from mcp.server.fastmcp import FastMCP +from pydantic import BaseModel, Field, field_validator, ConfigDict +from typing import Optional, List, Dict, Any +from enum import Enum +import httpx +``` + +### Server Initialization +```python +mcp = FastMCP("service_mcp") +``` + +### Tool Registration Pattern +```python +@mcp.tool(name="tool_name", annotations={...}) +async def tool_function(params: InputModel) -> str: + # Implementation + pass +``` + +--- + +## MCP Python SDK and FastMCP + +The official MCP Python SDK provides FastMCP, a high-level framework for building MCP servers. It provides: +- Automatic description and inputSchema generation from function signatures and docstrings +- Pydantic model integration for input validation +- Decorator-based tool registration with `@mcp.tool` + +**For complete SDK documentation, use WebFetch to load:** +`https://raw.githubusercontent.com/modelcontextprotocol/python-sdk/main/README.md` + +## Server Naming Convention + +Python MCP servers must follow this naming pattern: +- **Format**: `{service}_mcp` (lowercase with underscores) +- **Examples**: `github_mcp`, `jira_mcp`, `stripe_mcp` + +The name should be: +- General (not tied to specific features) +- Descriptive of the service/API being integrated +- Easy to infer from the task description +- Without version numbers or dates + +## Tool Implementation + +### Tool Naming + +Use snake_case for tool names (e.g., "search_users", "create_project", "get_channel_info") with clear, action-oriented names. + +**Avoid Naming Conflicts**: Include the service context to prevent overlaps: +- Use "slack_send_message" instead of just "send_message" +- Use "github_create_issue" instead of just "create_issue" +- Use "asana_list_tasks" instead of just "list_tasks" + +### Tool Structure with FastMCP + +Tools are defined using the `@mcp.tool` decorator with Pydantic models for input validation: + +```python +from pydantic import BaseModel, Field, ConfigDict +from mcp.server.fastmcp import FastMCP + +# Initialize the MCP server +mcp = FastMCP("example_mcp") + +# Define Pydantic model for input validation +class ServiceToolInput(BaseModel): + '''Input model for service tool operation.''' + model_config = ConfigDict( + str_strip_whitespace=True, # Auto-strip whitespace from strings + validate_assignment=True, # Validate on assignment + extra='forbid' # Forbid extra fields + ) + + param1: str = Field(..., description="First parameter description (e.g., 'user123', 'project-abc')", min_length=1, max_length=100) + param2: Optional[int] = Field(default=None, description="Optional integer parameter with constraints", ge=0, le=1000) + tags: Optional[List[str]] = Field(default_factory=list, description="List of tags to apply", max_items=10) + +@mcp.tool( + name="service_tool_name", + annotations={ + "title": "Human-Readable Tool Title", + "readOnlyHint": True, # Tool does not modify environment + "destructiveHint": False, # Tool does not perform destructive operations + "idempotentHint": True, # Repeated calls have no additional effect + "openWorldHint": False # Tool does not interact with external entities + } +) +async def service_tool_name(params: ServiceToolInput) -> str: + '''Tool description automatically becomes the 'description' field. + + This tool performs a specific operation on the service. It validates all inputs + using the ServiceToolInput Pydantic model before processing. + + Args: + params (ServiceToolInput): Validated input parameters containing: + - param1 (str): First parameter description + - param2 (Optional[int]): Optional parameter with default + - tags (Optional[List[str]]): List of tags + + Returns: + str: JSON-formatted response containing operation results + ''' + # Implementation here + pass +``` + +## Pydantic v2 Key Features + +- Use `model_config` instead of nested `Config` class +- Use `field_validator` instead of deprecated `validator` +- Use `model_dump()` instead of deprecated `dict()` +- Validators require `@classmethod` decorator +- Type hints are required for validator methods + +```python +from pydantic import BaseModel, Field, field_validator, ConfigDict + +class CreateUserInput(BaseModel): + model_config = ConfigDict( + str_strip_whitespace=True, + validate_assignment=True + ) + + name: str = Field(..., description="User's full name", min_length=1, max_length=100) + email: str = Field(..., description="User's email address", pattern=r'^[\w\.-]+@[\w\.-]+\.\w+$') + age: int = Field(..., description="User's age", ge=0, le=150) + + @field_validator('email') + @classmethod + def validate_email(cls, v: str) -> str: + if not v.strip(): + raise ValueError("Email cannot be empty") + return v.lower() +``` + +## Response Format Options + +Support multiple output formats for flexibility: + +```python +from enum import Enum + +class ResponseFormat(str, Enum): + '''Output format for tool responses.''' + MARKDOWN = "markdown" + JSON = "json" + +class UserSearchInput(BaseModel): + query: str = Field(..., description="Search query") + response_format: ResponseFormat = Field( + default=ResponseFormat.MARKDOWN, + description="Output format: 'markdown' for human-readable or 'json' for machine-readable" + ) +``` + +**Markdown format**: +- Use headers, lists, and formatting for clarity +- Convert timestamps to human-readable format (e.g., "2024-01-15 10:30:00 UTC" instead of epoch) +- Show display names with IDs in parentheses (e.g., "@john.doe (U123456)") +- Omit verbose metadata (e.g., show only one profile image URL, not all sizes) +- Group related information logically + +**JSON format**: +- Return complete, structured data suitable for programmatic processing +- Include all available fields and metadata +- Use consistent field names and types + +## Pagination Implementation + +For tools that list resources: + +```python +class ListInput(BaseModel): + limit: Optional[int] = Field(default=20, description="Maximum results to return", ge=1, le=100) + offset: Optional[int] = Field(default=0, description="Number of results to skip for pagination", ge=0) + +async def list_items(params: ListInput) -> str: + # Make API request with pagination + data = await api_request(limit=params.limit, offset=params.offset) + + # Return pagination info + response = { + "total": data["total"], + "count": len(data["items"]), + "offset": params.offset, + "items": data["items"], + "has_more": data["total"] > params.offset + len(data["items"]), + "next_offset": params.offset + len(data["items"]) if data["total"] > params.offset + len(data["items"]) else None + } + return json.dumps(response, indent=2) +``` + +## Character Limits and Truncation + +Add a CHARACTER_LIMIT constant to prevent overwhelming responses: + +```python +# At module level +CHARACTER_LIMIT = 25000 # Maximum response size in characters + +async def search_tool(params: SearchInput) -> str: + result = generate_response(data) + + # Check character limit and truncate if needed + if len(result) > CHARACTER_LIMIT: + # Truncate data and add notice + truncated_data = data[:max(1, len(data) // 2)] + response["data"] = truncated_data + response["truncated"] = True + response["truncation_message"] = ( + f"Response truncated from {len(data)} to {len(truncated_data)} items. " + f"Use 'offset' parameter or add filters to see more results." + ) + result = json.dumps(response, indent=2) + + return result +``` + +## Error Handling + +Provide clear, actionable error messages: + +```python +def _handle_api_error(e: Exception) -> str: + '''Consistent error formatting across all tools.''' + if isinstance(e, httpx.HTTPStatusError): + if e.response.status_code == 404: + return "Error: Resource not found. Please check the ID is correct." + elif e.response.status_code == 403: + return "Error: Permission denied. You don't have access to this resource." + elif e.response.status_code == 429: + return "Error: Rate limit exceeded. Please wait before making more requests." + return f"Error: API request failed with status {e.response.status_code}" + elif isinstance(e, httpx.TimeoutException): + return "Error: Request timed out. Please try again." + return f"Error: Unexpected error occurred: {type(e).__name__}" +``` + +## Shared Utilities + +Extract common functionality into reusable functions: + +```python +# Shared API request function +async def _make_api_request(endpoint: str, method: str = "GET", **kwargs) -> dict: + '''Reusable function for all API calls.''' + async with httpx.AsyncClient() as client: + response = await client.request( + method, + f"{API_BASE_URL}/{endpoint}", + timeout=30.0, + **kwargs + ) + response.raise_for_status() + return response.json() +``` + +## Async/Await Best Practices + +Always use async/await for network requests and I/O operations: + +```python +# Good: Async network request +async def fetch_data(resource_id: str) -> dict: + async with httpx.AsyncClient() as client: + response = await client.get(f"{API_URL}/resource/{resource_id}") + response.raise_for_status() + return response.json() + +# Bad: Synchronous request +def fetch_data(resource_id: str) -> dict: + response = requests.get(f"{API_URL}/resource/{resource_id}") # Blocks + return response.json() +``` + +## Type Hints + +Use type hints throughout: + +```python +from typing import Optional, List, Dict, Any + +async def get_user(user_id: str) -> Dict[str, Any]: + data = await fetch_user(user_id) + return {"id": data["id"], "name": data["name"]} +``` + +## Tool Docstrings + +Every tool must have comprehensive docstrings with explicit type information: + +```python +async def search_users(params: UserSearchInput) -> str: + ''' + Search for users in the Example system by name, email, or team. + + This tool searches across all user profiles in the Example platform, + supporting partial matches and various search filters. It does NOT + create or modify users, only searches existing ones. + + Args: + params (UserSearchInput): Validated input parameters containing: + - query (str): Search string to match against names/emails (e.g., "john", "@example.com", "team:marketing") + - limit (Optional[int]): Maximum results to return, between 1-100 (default: 20) + - offset (Optional[int]): Number of results to skip for pagination (default: 0) + + Returns: + str: JSON-formatted string containing search results with the following schema: + + Success response: + { + "total": int, # Total number of matches found + "count": int, # Number of results in this response + "offset": int, # Current pagination offset + "users": [ + { + "id": str, # User ID (e.g., "U123456789") + "name": str, # Full name (e.g., "John Doe") + "email": str, # Email address (e.g., "john@example.com") + "team": str # Team name (e.g., "Marketing") - optional + } + ] + } + + Error response: + "Error: " or "No users found matching ''" + + Examples: + - Use when: "Find all marketing team members" -> params with query="team:marketing" + - Use when: "Search for John's account" -> params with query="john" + - Don't use when: You need to create a user (use example_create_user instead) + - Don't use when: You have a user ID and need full details (use example_get_user instead) + + Error Handling: + - Input validation errors are handled by Pydantic model + - Returns "Error: Rate limit exceeded" if too many requests (429 status) + - Returns "Error: Invalid API authentication" if API key is invalid (401 status) + - Returns formatted list of results or "No users found matching 'query'" + ''' +``` + +## Complete Example + +See below for a complete Python MCP server example: + +```python +#!/usr/bin/env python3 +''' +MCP Server for Example Service. + +This server provides tools to interact with Example API, including user search, +project management, and data export capabilities. +''' + +from typing import Optional, List, Dict, Any +from enum import Enum +import httpx +from pydantic import BaseModel, Field, field_validator, ConfigDict +from mcp.server.fastmcp import FastMCP + +# Initialize the MCP server +mcp = FastMCP("example_mcp") + +# Constants +API_BASE_URL = "https://api.example.com/v1" +CHARACTER_LIMIT = 25000 # Maximum response size in characters + +# Enums +class ResponseFormat(str, Enum): + '''Output format for tool responses.''' + MARKDOWN = "markdown" + JSON = "json" + +# Pydantic Models for Input Validation +class UserSearchInput(BaseModel): + '''Input model for user search operations.''' + model_config = ConfigDict( + str_strip_whitespace=True, + validate_assignment=True + ) + + query: str = Field(..., description="Search string to match against names/emails", min_length=2, max_length=200) + limit: Optional[int] = Field(default=20, description="Maximum results to return", ge=1, le=100) + offset: Optional[int] = Field(default=0, description="Number of results to skip for pagination", ge=0) + response_format: ResponseFormat = Field(default=ResponseFormat.MARKDOWN, description="Output format") + + @field_validator('query') + @classmethod + def validate_query(cls, v: str) -> str: + if not v.strip(): + raise ValueError("Query cannot be empty or whitespace only") + return v.strip() + +# Shared utility functions +async def _make_api_request(endpoint: str, method: str = "GET", **kwargs) -> dict: + '''Reusable function for all API calls.''' + async with httpx.AsyncClient() as client: + response = await client.request( + method, + f"{API_BASE_URL}/{endpoint}", + timeout=30.0, + **kwargs + ) + response.raise_for_status() + return response.json() + +def _handle_api_error(e: Exception) -> str: + '''Consistent error formatting across all tools.''' + if isinstance(e, httpx.HTTPStatusError): + if e.response.status_code == 404: + return "Error: Resource not found. Please check the ID is correct." + elif e.response.status_code == 403: + return "Error: Permission denied. You don't have access to this resource." + elif e.response.status_code == 429: + return "Error: Rate limit exceeded. Please wait before making more requests." + return f"Error: API request failed with status {e.response.status_code}" + elif isinstance(e, httpx.TimeoutException): + return "Error: Request timed out. Please try again." + return f"Error: Unexpected error occurred: {type(e).__name__}" + +# Tool definitions +@mcp.tool( + name="example_search_users", + annotations={ + "title": "Search Example Users", + "readOnlyHint": True, + "destructiveHint": False, + "idempotentHint": True, + "openWorldHint": True + } +) +async def example_search_users(params: UserSearchInput) -> str: + '''Search for users in the Example system by name, email, or team. + + [Full docstring as shown above] + ''' + try: + # Make API request using validated parameters + data = await _make_api_request( + "users/search", + params={ + "q": params.query, + "limit": params.limit, + "offset": params.offset + } + ) + + users = data.get("users", []) + total = data.get("total", 0) + + if not users: + return f"No users found matching '{params.query}'" + + # Format response based on requested format + if params.response_format == ResponseFormat.MARKDOWN: + lines = [f"# User Search Results: '{params.query}'", ""] + lines.append(f"Found {total} users (showing {len(users)})") + lines.append("") + + for user in users: + lines.append(f"## {user['name']} ({user['id']})") + lines.append(f"- **Email**: {user['email']}") + if user.get('team'): + lines.append(f"- **Team**: {user['team']}") + lines.append("") + + return "\n".join(lines) + + else: + # Machine-readable JSON format + import json + response = { + "total": total, + "count": len(users), + "offset": params.offset, + "users": users + } + return json.dumps(response, indent=2) + + except Exception as e: + return _handle_api_error(e) + +if __name__ == "__main__": + mcp.run() +``` + +--- + +## Advanced FastMCP Features + +### Context Parameter Injection + +FastMCP can automatically inject a `Context` parameter into tools for advanced capabilities like logging, progress reporting, resource reading, and user interaction: + +```python +from mcp.server.fastmcp import FastMCP, Context + +mcp = FastMCP("example_mcp") + +@mcp.tool() +async def advanced_search(query: str, ctx: Context) -> str: + '''Advanced tool with context access for logging and progress.''' + + # Report progress for long operations + await ctx.report_progress(0.25, "Starting search...") + + # Log information for debugging + await ctx.log_info("Processing query", {"query": query, "timestamp": datetime.now()}) + + # Perform search + results = await search_api(query) + await ctx.report_progress(0.75, "Formatting results...") + + # Access server configuration + server_name = ctx.fastmcp.name + + return format_results(results) + +@mcp.tool() +async def interactive_tool(resource_id: str, ctx: Context) -> str: + '''Tool that can request additional input from users.''' + + # Request sensitive information when needed + api_key = await ctx.elicit( + prompt="Please provide your API key:", + input_type="password" + ) + + # Use the provided key + return await api_call(resource_id, api_key) +``` + +**Context capabilities:** +- `ctx.report_progress(progress, message)` - Report progress for long operations +- `ctx.log_info(message, data)` / `ctx.log_error()` / `ctx.log_debug()` - Logging +- `ctx.elicit(prompt, input_type)` - Request input from users +- `ctx.fastmcp.name` - Access server configuration +- `ctx.read_resource(uri)` - Read MCP resources + +### Resource Registration + +Expose data as resources for efficient, template-based access: + +```python +@mcp.resource("file://documents/{name}") +async def get_document(name: str) -> str: + '''Expose documents as MCP resources. + + Resources are useful for static or semi-static data that doesn't + require complex parameters. They use URI templates for flexible access. + ''' + document_path = f"./docs/{name}" + with open(document_path, "r") as f: + return f.read() + +@mcp.resource("config://settings/{key}") +async def get_setting(key: str, ctx: Context) -> str: + '''Expose configuration as resources with context.''' + settings = await load_settings() + return json.dumps(settings.get(key, {})) +``` + +**When to use Resources vs Tools:** +- **Resources**: For data access with simple parameters (URI templates) +- **Tools**: For complex operations with validation and business logic + +### Structured Output Types + +FastMCP supports multiple return types beyond strings: + +```python +from typing import TypedDict +from dataclasses import dataclass +from pydantic import BaseModel + +# TypedDict for structured returns +class UserData(TypedDict): + id: str + name: str + email: str + +@mcp.tool() +async def get_user_typed(user_id: str) -> UserData: + '''Returns structured data - FastMCP handles serialization.''' + return {"id": user_id, "name": "John Doe", "email": "john@example.com"} + +# Pydantic models for complex validation +class DetailedUser(BaseModel): + id: str + name: str + email: str + created_at: datetime + metadata: Dict[str, Any] + +@mcp.tool() +async def get_user_detailed(user_id: str) -> DetailedUser: + '''Returns Pydantic model - automatically generates schema.''' + user = await fetch_user(user_id) + return DetailedUser(**user) +``` + +### Lifespan Management + +Initialize resources that persist across requests: + +```python +from contextlib import asynccontextmanager + +@asynccontextmanager +async def app_lifespan(): + '''Manage resources that live for the server's lifetime.''' + # Initialize connections, load config, etc. + db = await connect_to_database() + config = load_configuration() + + # Make available to all tools + yield {"db": db, "config": config} + + # Cleanup on shutdown + await db.close() + +mcp = FastMCP("example_mcp", lifespan=app_lifespan) + +@mcp.tool() +async def query_data(query: str, ctx: Context) -> str: + '''Access lifespan resources through context.''' + db = ctx.request_context.lifespan_state["db"] + results = await db.query(query) + return format_results(results) +``` + +### Multiple Transport Options + +FastMCP supports different transport mechanisms: + +```python +# Default: Stdio transport (for CLI tools) +if __name__ == "__main__": + mcp.run() + +# HTTP transport (for web services) +if __name__ == "__main__": + mcp.run(transport="streamable_http", port=8000) + +# SSE transport (for real-time updates) +if __name__ == "__main__": + mcp.run(transport="sse", port=8000) +``` + +**Transport selection:** +- **Stdio**: Command-line tools, subprocess integration +- **HTTP**: Web services, remote access, multiple clients +- **SSE**: Real-time updates, push notifications + +--- + +## Code Best Practices + +### Code Composability and Reusability + +Your implementation MUST prioritize composability and code reuse: + +1. **Extract Common Functionality**: + - Create reusable helper functions for operations used across multiple tools + - Build shared API clients for HTTP requests instead of duplicating code + - Centralize error handling logic in utility functions + - Extract business logic into dedicated functions that can be composed + - Extract shared markdown or JSON field selection & formatting functionality + +2. **Avoid Duplication**: + - NEVER copy-paste similar code between tools + - If you find yourself writing similar logic twice, extract it into a function + - Common operations like pagination, filtering, field selection, and formatting should be shared + - Authentication/authorization logic should be centralized + +### Python-Specific Best Practices + +1. **Use Type Hints**: Always include type annotations for function parameters and return values +2. **Pydantic Models**: Define clear Pydantic models for all input validation +3. **Avoid Manual Validation**: Let Pydantic handle input validation with constraints +4. **Proper Imports**: Group imports (standard library, third-party, local) +5. **Error Handling**: Use specific exception types (httpx.HTTPStatusError, not generic Exception) +6. **Async Context Managers**: Use `async with` for resources that need cleanup +7. **Constants**: Define module-level constants in UPPER_CASE + +## Quality Checklist + +Before finalizing your Python MCP server implementation, ensure: + +### Strategic Design +- [ ] Tools enable complete workflows, not just API endpoint wrappers +- [ ] Tool names reflect natural task subdivisions +- [ ] Response formats optimize for agent context efficiency +- [ ] Human-readable identifiers used where appropriate +- [ ] Error messages guide agents toward correct usage + +### Implementation Quality +- [ ] FOCUSED IMPLEMENTATION: Most important and valuable tools implemented +- [ ] All tools have descriptive names and documentation +- [ ] Return types are consistent across similar operations +- [ ] Error handling is implemented for all external calls +- [ ] Server name follows format: `{service}_mcp` +- [ ] All network operations use async/await +- [ ] Common functionality is extracted into reusable functions +- [ ] Error messages are clear, actionable, and educational +- [ ] Outputs are properly validated and formatted + +### Tool Configuration +- [ ] All tools implement 'name' and 'annotations' in the decorator +- [ ] Annotations correctly set (readOnlyHint, destructiveHint, idempotentHint, openWorldHint) +- [ ] All tools use Pydantic BaseModel for input validation with Field() definitions +- [ ] All Pydantic Fields have explicit types and descriptions with constraints +- [ ] All tools have comprehensive docstrings with explicit input/output types +- [ ] Docstrings include complete schema structure for dict/JSON returns +- [ ] Pydantic models handle input validation (no manual validation needed) + +### Advanced Features (where applicable) +- [ ] Context injection used for logging, progress, or elicitation +- [ ] Resources registered for appropriate data endpoints +- [ ] Lifespan management implemented for persistent connections +- [ ] Structured output types used (TypedDict, Pydantic models) +- [ ] Appropriate transport configured (stdio, HTTP, SSE) + +### Code Quality +- [ ] File includes proper imports including Pydantic imports +- [ ] Pagination is properly implemented where applicable +- [ ] Large responses check CHARACTER_LIMIT and truncate with clear messages +- [ ] Filtering options are provided for potentially large result sets +- [ ] All async functions are properly defined with `async def` +- [ ] HTTP client usage follows async patterns with proper context managers +- [ ] Type hints are used throughout the code +- [ ] Constants are defined at module level in UPPER_CASE + +### Testing +- [ ] Server runs successfully: `python your_server.py --help` +- [ ] All imports resolve correctly +- [ ] Sample tool calls work as expected +- [ ] Error scenarios handled gracefully \ No newline at end of file diff --git a/scripts/connections.py b/scripts/connections.py new file mode 100644 index 0000000..ffcd0da --- /dev/null +++ b/scripts/connections.py @@ -0,0 +1,151 @@ +"""Lightweight connection handling for MCP servers.""" + +from abc import ABC, abstractmethod +from contextlib import AsyncExitStack +from typing import Any + +from mcp import ClientSession, StdioServerParameters +from mcp.client.sse import sse_client +from mcp.client.stdio import stdio_client +from mcp.client.streamable_http import streamablehttp_client + + +class MCPConnection(ABC): + """Base class for MCP server connections.""" + + def __init__(self): + self.session = None + self._stack = None + + @abstractmethod + def _create_context(self): + """Create the connection context based on connection type.""" + + async def __aenter__(self): + """Initialize MCP server connection.""" + self._stack = AsyncExitStack() + await self._stack.__aenter__() + + try: + ctx = self._create_context() + result = await self._stack.enter_async_context(ctx) + + if len(result) == 2: + read, write = result + elif len(result) == 3: + read, write, _ = result + else: + raise ValueError(f"Unexpected context result: {result}") + + session_ctx = ClientSession(read, write) + self.session = await self._stack.enter_async_context(session_ctx) + await self.session.initialize() + return self + except BaseException: + await self._stack.__aexit__(None, None, None) + raise + + async def __aexit__(self, exc_type, exc_val, exc_tb): + """Clean up MCP server connection resources.""" + if self._stack: + await self._stack.__aexit__(exc_type, exc_val, exc_tb) + self.session = None + self._stack = None + + async def list_tools(self) -> list[dict[str, Any]]: + """Retrieve available tools from the MCP server.""" + response = await self.session.list_tools() + return [ + { + "name": tool.name, + "description": tool.description, + "input_schema": tool.inputSchema, + } + for tool in response.tools + ] + + async def call_tool(self, tool_name: str, arguments: dict[str, Any]) -> Any: + """Call a tool on the MCP server with provided arguments.""" + result = await self.session.call_tool(tool_name, arguments=arguments) + return result.content + + +class MCPConnectionStdio(MCPConnection): + """MCP connection using standard input/output.""" + + def __init__(self, command: str, args: list[str] = None, env: dict[str, str] = None): + super().__init__() + self.command = command + self.args = args or [] + self.env = env + + def _create_context(self): + return stdio_client( + StdioServerParameters(command=self.command, args=self.args, env=self.env) + ) + + +class MCPConnectionSSE(MCPConnection): + """MCP connection using Server-Sent Events.""" + + def __init__(self, url: str, headers: dict[str, str] = None): + super().__init__() + self.url = url + self.headers = headers or {} + + def _create_context(self): + return sse_client(url=self.url, headers=self.headers) + + +class MCPConnectionHTTP(MCPConnection): + """MCP connection using Streamable HTTP.""" + + def __init__(self, url: str, headers: dict[str, str] = None): + super().__init__() + self.url = url + self.headers = headers or {} + + def _create_context(self): + return streamablehttp_client(url=self.url, headers=self.headers) + + +def create_connection( + transport: str, + command: str = None, + args: list[str] = None, + env: dict[str, str] = None, + url: str = None, + headers: dict[str, str] = None, +) -> MCPConnection: + """Factory function to create the appropriate MCP connection. + + Args: + transport: Connection type ("stdio", "sse", or "http") + command: Command to run (stdio only) + args: Command arguments (stdio only) + env: Environment variables (stdio only) + url: Server URL (sse and http only) + headers: HTTP headers (sse and http only) + + Returns: + MCPConnection instance + """ + transport = transport.lower() + + if transport == "stdio": + if not command: + raise ValueError("Command is required for stdio transport") + return MCPConnectionStdio(command=command, args=args, env=env) + + elif transport == "sse": + if not url: + raise ValueError("URL is required for sse transport") + return MCPConnectionSSE(url=url, headers=headers) + + elif transport in ["http", "streamable_http", "streamable-http"]: + if not url: + raise ValueError("URL is required for http transport") + return MCPConnectionHTTP(url=url, headers=headers) + + else: + raise ValueError(f"Unsupported transport type: {transport}. Use 'stdio', 'sse', or 'http'") diff --git a/scripts/evaluation.py b/scripts/evaluation.py new file mode 100644 index 0000000..4177856 --- /dev/null +++ b/scripts/evaluation.py @@ -0,0 +1,373 @@ +"""MCP Server Evaluation Harness + +This script evaluates MCP servers by running test questions against them using Claude. +""" + +import argparse +import asyncio +import json +import re +import sys +import time +import traceback +import xml.etree.ElementTree as ET +from pathlib import Path +from typing import Any + +from anthropic import Anthropic + +from connections import create_connection + +EVALUATION_PROMPT = """You are an AI assistant with access to tools. + +When given a task, you MUST: +1. Use the available tools to complete the task +2. Provide summary of each step in your approach, wrapped in tags +3. Provide feedback on the tools provided, wrapped in tags +4. Provide your final response, wrapped in tags + +Summary Requirements: +- In your tags, you must explain: + - The steps you took to complete the task + - Which tools you used, in what order, and why + - The inputs you provided to each tool + - The outputs you received from each tool + - A summary for how you arrived at the response + +Feedback Requirements: +- In your tags, provide constructive feedback on the tools: + - Comment on tool names: Are they clear and descriptive? + - Comment on input parameters: Are they well-documented? Are required vs optional parameters clear? + - Comment on descriptions: Do they accurately describe what the tool does? + - Comment on any errors encountered during tool usage: Did the tool fail to execute? Did the tool return too many tokens? + - Identify specific areas for improvement and explain WHY they would help + - Be specific and actionable in your suggestions + +Response Requirements: +- Your response should be concise and directly address what was asked +- Always wrap your final response in tags +- If you cannot solve the task return NOT_FOUND +- For numeric responses, provide just the number +- For IDs, provide just the ID +- For names or text, provide the exact text requested +- Your response should go last""" + + +def parse_evaluation_file(file_path: Path) -> list[dict[str, Any]]: + """Parse XML evaluation file with qa_pair elements.""" + try: + tree = ET.parse(file_path) + root = tree.getroot() + evaluations = [] + + for qa_pair in root.findall(".//qa_pair"): + question_elem = qa_pair.find("question") + answer_elem = qa_pair.find("answer") + + if question_elem is not None and answer_elem is not None: + evaluations.append({ + "question": (question_elem.text or "").strip(), + "answer": (answer_elem.text or "").strip(), + }) + + return evaluations + except Exception as e: + print(f"Error parsing evaluation file {file_path}: {e}") + return [] + + +def extract_xml_content(text: str, tag: str) -> str | None: + """Extract content from XML tags.""" + pattern = rf"<{tag}>(.*?)" + matches = re.findall(pattern, text, re.DOTALL) + return matches[-1].strip() if matches else None + + +async def agent_loop( + client: Anthropic, + model: str, + question: str, + tools: list[dict[str, Any]], + connection: Any, +) -> tuple[str, dict[str, Any]]: + """Run the agent loop with MCP tools.""" + messages = [{"role": "user", "content": question}] + + response = await asyncio.to_thread( + client.messages.create, + model=model, + max_tokens=4096, + system=EVALUATION_PROMPT, + messages=messages, + tools=tools, + ) + + messages.append({"role": "assistant", "content": response.content}) + + tool_metrics = {} + + while response.stop_reason == "tool_use": + tool_use = next(block for block in response.content if block.type == "tool_use") + tool_name = tool_use.name + tool_input = tool_use.input + + tool_start_ts = time.time() + try: + tool_result = await connection.call_tool(tool_name, tool_input) + tool_response = json.dumps(tool_result) if isinstance(tool_result, (dict, list)) else str(tool_result) + except Exception as e: + tool_response = f"Error executing tool {tool_name}: {str(e)}\n" + tool_response += traceback.format_exc() + tool_duration = time.time() - tool_start_ts + + if tool_name not in tool_metrics: + tool_metrics[tool_name] = {"count": 0, "durations": []} + tool_metrics[tool_name]["count"] += 1 + tool_metrics[tool_name]["durations"].append(tool_duration) + + messages.append({ + "role": "user", + "content": [{ + "type": "tool_result", + "tool_use_id": tool_use.id, + "content": tool_response, + }] + }) + + response = await asyncio.to_thread( + client.messages.create, + model=model, + max_tokens=4096, + system=EVALUATION_PROMPT, + messages=messages, + tools=tools, + ) + messages.append({"role": "assistant", "content": response.content}) + + response_text = next( + (block.text for block in response.content if hasattr(block, "text")), + None, + ) + return response_text, tool_metrics + + +async def evaluate_single_task( + client: Anthropic, + model: str, + qa_pair: dict[str, Any], + tools: list[dict[str, Any]], + connection: Any, + task_index: int, +) -> dict[str, Any]: + """Evaluate a single QA pair with the given tools.""" + start_time = time.time() + + print(f"Task {task_index + 1}: Running task with question: {qa_pair['question']}") + response, tool_metrics = await agent_loop(client, model, qa_pair["question"], tools, connection) + + response_value = extract_xml_content(response, "response") + summary = extract_xml_content(response, "summary") + feedback = extract_xml_content(response, "feedback") + + duration_seconds = time.time() - start_time + + return { + "question": qa_pair["question"], + "expected": qa_pair["answer"], + "actual": response_value, + "score": int(response_value == qa_pair["answer"]) if response_value else 0, + "total_duration": duration_seconds, + "tool_calls": tool_metrics, + "num_tool_calls": sum(len(metrics["durations"]) for metrics in tool_metrics.values()), + "summary": summary, + "feedback": feedback, + } + + +REPORT_HEADER = """ +# Evaluation Report + +## Summary + +- **Accuracy**: {correct}/{total} ({accuracy:.1f}%) +- **Average Task Duration**: {average_duration_s:.2f}s +- **Average Tool Calls per Task**: {average_tool_calls:.2f} +- **Total Tool Calls**: {total_tool_calls} + +--- +""" + +TASK_TEMPLATE = """ +### Task {task_num} + +**Question**: {question} +**Ground Truth Answer**: `{expected_answer}` +**Actual Answer**: `{actual_answer}` +**Correct**: {correct_indicator} +**Duration**: {total_duration:.2f}s +**Tool Calls**: {tool_calls} + +**Summary** +{summary} + +**Feedback** +{feedback} + +--- +""" + + +async def run_evaluation( + eval_path: Path, + connection: Any, + model: str = "claude-3-7-sonnet-20250219", +) -> str: + """Run evaluation with MCP server tools.""" + print("šŸš€ Starting Evaluation") + + client = Anthropic() + + tools = await connection.list_tools() + print(f"šŸ“‹ Loaded {len(tools)} tools from MCP server") + + qa_pairs = parse_evaluation_file(eval_path) + print(f"šŸ“‹ Loaded {len(qa_pairs)} evaluation tasks") + + results = [] + for i, qa_pair in enumerate(qa_pairs): + print(f"Processing task {i + 1}/{len(qa_pairs)}") + result = await evaluate_single_task(client, model, qa_pair, tools, connection, i) + results.append(result) + + correct = sum(r["score"] for r in results) + accuracy = (correct / len(results)) * 100 if results else 0 + average_duration_s = sum(r["total_duration"] for r in results) / len(results) if results else 0 + average_tool_calls = sum(r["num_tool_calls"] for r in results) / len(results) if results else 0 + total_tool_calls = sum(r["num_tool_calls"] for r in results) + + report = REPORT_HEADER.format( + correct=correct, + total=len(results), + accuracy=accuracy, + average_duration_s=average_duration_s, + average_tool_calls=average_tool_calls, + total_tool_calls=total_tool_calls, + ) + + report += "".join([ + TASK_TEMPLATE.format( + task_num=i + 1, + question=qa_pair["question"], + expected_answer=qa_pair["answer"], + actual_answer=result["actual"] or "N/A", + correct_indicator="āœ…" if result["score"] else "āŒ", + total_duration=result["total_duration"], + tool_calls=json.dumps(result["tool_calls"], indent=2), + summary=result["summary"] or "N/A", + feedback=result["feedback"] or "N/A", + ) + for i, (qa_pair, result) in enumerate(zip(qa_pairs, results)) + ]) + + return report + + +def parse_headers(header_list: list[str]) -> dict[str, str]: + """Parse header strings in format 'Key: Value' into a dictionary.""" + headers = {} + if not header_list: + return headers + + for header in header_list: + if ":" in header: + key, value = header.split(":", 1) + headers[key.strip()] = value.strip() + else: + print(f"Warning: Ignoring malformed header: {header}") + return headers + + +def parse_env_vars(env_list: list[str]) -> dict[str, str]: + """Parse environment variable strings in format 'KEY=VALUE' into a dictionary.""" + env = {} + if not env_list: + return env + + for env_var in env_list: + if "=" in env_var: + key, value = env_var.split("=", 1) + env[key.strip()] = value.strip() + else: + print(f"Warning: Ignoring malformed environment variable: {env_var}") + return env + + +async def main(): + parser = argparse.ArgumentParser( + description="Evaluate MCP servers using test questions", + formatter_class=argparse.RawDescriptionHelpFormatter, + epilog=""" +Examples: + # Evaluate a local stdio MCP server + python evaluation.py -t stdio -c python -a my_server.py eval.xml + + # Evaluate an SSE MCP server + python evaluation.py -t sse -u https://example.com/mcp -H "Authorization: Bearer token" eval.xml + + # Evaluate an HTTP MCP server with custom model + python evaluation.py -t http -u https://example.com/mcp -m claude-3-5-sonnet-20241022 eval.xml + """, + ) + + parser.add_argument("eval_file", type=Path, help="Path to evaluation XML file") + parser.add_argument("-t", "--transport", choices=["stdio", "sse", "http"], default="stdio", help="Transport type (default: stdio)") + parser.add_argument("-m", "--model", default="claude-3-7-sonnet-20250219", help="Claude model to use (default: claude-3-7-sonnet-20250219)") + + stdio_group = parser.add_argument_group("stdio options") + stdio_group.add_argument("-c", "--command", help="Command to run MCP server (stdio only)") + stdio_group.add_argument("-a", "--args", nargs="+", help="Arguments for the command (stdio only)") + stdio_group.add_argument("-e", "--env", nargs="+", help="Environment variables in KEY=VALUE format (stdio only)") + + remote_group = parser.add_argument_group("sse/http options") + remote_group.add_argument("-u", "--url", help="MCP server URL (sse/http only)") + remote_group.add_argument("-H", "--header", nargs="+", dest="headers", help="HTTP headers in 'Key: Value' format (sse/http only)") + + parser.add_argument("-o", "--output", type=Path, help="Output file for evaluation report (default: stdout)") + + args = parser.parse_args() + + if not args.eval_file.exists(): + print(f"Error: Evaluation file not found: {args.eval_file}") + sys.exit(1) + + headers = parse_headers(args.headers) if args.headers else None + env_vars = parse_env_vars(args.env) if args.env else None + + try: + connection = create_connection( + transport=args.transport, + command=args.command, + args=args.args, + env=env_vars, + url=args.url, + headers=headers, + ) + except ValueError as e: + print(f"Error: {e}") + sys.exit(1) + + print(f"šŸ”— Connecting to MCP server via {args.transport}...") + + async with connection: + print("āœ… Connected successfully") + report = await run_evaluation(args.eval_file, connection, args.model) + + if args.output: + args.output.write_text(report) + print(f"\nāœ… Report saved to {args.output}") + else: + print("\n" + report) + + +if __name__ == "__main__": + asyncio.run(main()) diff --git a/scripts/example_evaluation.xml b/scripts/example_evaluation.xml new file mode 100644 index 0000000..41e4459 --- /dev/null +++ b/scripts/example_evaluation.xml @@ -0,0 +1,22 @@ + + + Calculate the compound interest on $10,000 invested at 5% annual interest rate, compounded monthly for 3 years. What is the final amount in dollars (rounded to 2 decimal places)? + 11614.72 + + + A projectile is launched at a 45-degree angle with an initial velocity of 50 m/s. Calculate the total distance (in meters) it has traveled from the launch point after 2 seconds, assuming g=9.8 m/s². Round to 2 decimal places. + 87.25 + + + A sphere has a volume of 500 cubic meters. Calculate its surface area in square meters. Round to 2 decimal places. + 304.65 + + + Calculate the population standard deviation of this dataset: [12, 15, 18, 22, 25, 30, 35]. Round to 2 decimal places. + 7.61 + + + Calculate the pH of a solution with a hydrogen ion concentration of 3.5 Ɨ 10^-5 M. Round to 2 decimal places. + 4.46 + + diff --git a/scripts/requirements.txt b/scripts/requirements.txt new file mode 100644 index 0000000..e73e5d1 --- /dev/null +++ b/scripts/requirements.txt @@ -0,0 +1,2 @@ +anthropic>=0.39.0 +mcp>=1.1.0