Files
gh-codingkaiser-claude-kais…/skills/r-development/references/rlang-patterns.md
2025-11-29 18:15:04 +08:00

6.3 KiB

rlang Patterns for Data-Masking

Core Concepts

Data-masking allows R expressions to refer to data frame columns as if they were variables in the environment. rlang provides the metaprogramming framework that powers tidyverse data-masking.

Key rlang Tools

  • Embracing {{}} - Forward function arguments to data-masking functions
  • Injection !! - Inject single expressions or values
  • Splicing !!! - Inject multiple arguments from a list
  • Dynamic dots - Programmable ... with injection support
  • Pronouns .data/.env - Explicit disambiguation between data and environment variables

Function Argument Patterns

Forwarding with {{}}

Use {{}} to forward function arguments to data-masking functions:

# Single argument forwarding
my_summarise <- function(data, var) {
  data |> dplyr::summarise(mean = mean({{ var }}))
}

# Works with any data-masking expression
mtcars |> my_summarise(cyl)
mtcars |> my_summarise(cyl * am)
mtcars |> my_summarise(.data$cyl)  # pronoun syntax supported

Forwarding ...

No special syntax needed for dots forwarding:

# Simple dots forwarding
my_group_by <- function(.data, ...) {
  .data |> dplyr::group_by(...)
}

# Works with tidy selections too
my_select <- function(.data, ...) {
  .data |> dplyr::select(...)
}

# For single-argument tidy selections, wrap in c()
my_pivot_longer <- function(.data, ...) {
  .data |> tidyr::pivot_longer(c(...))
}

Names Patterns with .data

Use .data pronoun for programmatic column access:

# Single column by name
my_mean <- function(data, var) {
  data |> dplyr::summarise(mean = mean(.data[[var]]))
}

# Usage - completely insulated from data-masking
mtcars |> my_mean("cyl")  # No ambiguity, works like regular function

# Multiple columns with all_of()
my_select_vars <- function(data, vars) {
  data |> dplyr::select(all_of(vars))
}

mtcars |> my_select_vars(c("cyl", "am"))

Injection Operators

When to Use Each Operator

Operator Use Case Example
{{ }} Forward function arguments summarise(mean = mean({{ var }}))
!! Inject single expression/value summarise(mean = mean(!!sym(var)))
!!! Inject multiple arguments group_by(!!!syms(vars))
.data[[]] Access columns by name mean(.data[[var]])

Advanced Injection with !!

# Create symbols from strings
var <- "cyl"
mtcars |> dplyr::summarise(mean = mean(!!sym(var)))

# Inject values to avoid name collisions
df <- data.frame(x = 1:3)
x <- 100
df |> dplyr::mutate(scaled = x / !!x)  # Uses both data and env x

# Use data_sym() for tidyeval contexts (more robust)
mtcars |> dplyr::summarise(mean = mean(!!data_sym(var)))

Splicing with !!!

# Multiple symbols from character vector
vars <- c("cyl", "am")
mtcars |> dplyr::group_by(!!!syms(vars))

# Or use data_syms() for tidy contexts
mtcars |> dplyr::group_by(!!!data_syms(vars))

# Splice lists of arguments
args <- list(na.rm = TRUE, trim = 0.1)
mtcars |> dplyr::summarise(mean = mean(cyl, !!!args))

Dynamic Dots Patterns

Using list2() for Dynamic Dots Support

my_function <- function(...) {
  # Collect with list2() instead of list() for dynamic features
  dots <- list2(...)
  # Process dots...
}

# Enables these features:
my_function(a = 1, b = 2)           # Normal usage
my_function(!!!list(a = 1, b = 2))  # Splice a list
my_function("{name}" := value)      # Name injection
my_function(a = 1, )               # Trailing commas OK

Name Injection with Glue Syntax

# Basic name injection
name <- "result"
list2("{name}" := 1)  # Creates list(result = 1)

# In function arguments with {{
my_mean <- function(data, var) {
  data |> dplyr::summarise("mean_{{ var }}" := mean({{ var }}))
}

mtcars |> my_mean(cyl)        # Creates column "mean_cyl"
mtcars |> my_mean(cyl * am)   # Creates column "mean_cyl * am"

# Allow custom names with englue()
my_mean <- function(data, var, name = englue("mean_{{ var }}")) {
  data |> dplyr::summarise("{name}" := mean({{ var }}))
}

# User can override default
mtcars |> my_mean(cyl, name = "cylinder_mean")

Pronouns for Disambiguation

.data and .env Best Practices

# Explicit disambiguation prevents masking issues
cyl <- 1000  # Environment variable

mtcars |> dplyr::summarise(
  data_cyl = mean(.data$cyl),    # Data frame column
  env_cyl = mean(.env$cyl),      # Environment variable
  ambiguous = mean(cyl)          # Could be either (usually data wins)
)

# Use in loops and programmatic contexts
vars <- c("cyl", "am")
for (var in vars) {
  result <- mtcars |> dplyr::summarise(mean = mean(.data[[var]]))
  print(result)
}

Programming Patterns

Bridge Patterns

Converting between data-masking and tidy selection behaviors:

# across() as selection-to-data-mask bridge
my_group_by <- function(data, vars) {
  data |> dplyr::group_by(across({{ vars }}))
}

# Works with tidy selection
mtcars |> my_group_by(starts_with("c"))

# across(all_of()) as names-to-data-mask bridge  
my_group_by <- function(data, vars) {
  data |> dplyr::group_by(across(all_of(vars)))
}

mtcars |> my_group_by(c("cyl", "am"))

Transformation Patterns

# Transform single arguments by wrapping
my_mean <- function(data, var) {
  data |> dplyr::summarise(mean = mean({{ var }}, na.rm = TRUE))
}

# Transform dots with across()
my_means <- function(data, ...) {
  data |> dplyr::summarise(across(c(...), ~ mean(.x, na.rm = TRUE)))
}

# Manual transformation (advanced)
my_means_manual <- function(.data, ...) {
  vars <- enquos(..., .named = TRUE)
  vars <- purrr::map(vars, ~ expr(mean(!!.x, na.rm = TRUE)))
  .data |> dplyr::summarise(!!!vars)
}

Common Patterns Summary

When to Use What

Use {{}} when:

  • Forwarding user-provided column references
  • Building wrapper functions around dplyr/tidyr
  • Need to support both bare names and expressions

Use .data[[]] when:

  • Working with character vector column names
  • Iterating over column names programmatically
  • Need complete insulation from data-masking

Use !! when:

  • Need to inject computed expressions
  • Converting strings to symbols with sym()
  • Avoiding variable name collisions

Use !!! when:

  • Injecting multiple arguments from a list
  • Working with variable numbers of columns
  • Splicing named arguments