Files
gh-codingkaiser-claude-kais…/skills/r-development/references/object-systems.md
2025-11-29 18:15:04 +08:00

311 lines
6.9 KiB
Markdown

# Object-Oriented Programming in R
## S7: Modern OOP for New Projects
S7 combines S3 simplicity with S4 structure:
- Formal class definitions with automatic validation
- Compatible with existing S3 code
- Better error messages and discoverability
```r
# S7 class definition
Range <- new_class("Range",
properties = list(
start = class_double,
end = class_double
),
validator = function(self) {
if (self@end < self@start) {
"@end must be >= @start"
}
}
)
# Usage - constructor and property access
x <- Range(start = 1, end = 10)
x@start # 1
x@end <- 20 # automatic validation
# Methods
inside <- new_generic("inside", "x")
method(inside, Range) <- function(x, y) {
y >= x@start & y <= x@end
}
```
## OOP System Decision Matrix
### Decision Tree: What Are You Building?
#### 1. Vector-like Objects
**Use vctrs when:**
- ✓ Need data frame integration (columns/rows)
- ✓ Want type-stable vector operations
- ✓ Building factor-like, date-like, or numeric-like classes
- ✓ Need consistent coercion/casting behavior
- ✓ Working with existing tidyverse infrastructure
**Examples:** custom date classes, units, categorical data
```r
# Vector-like behavior in data frames
percent <- new_vctr(0.5, class = "percentage")
data.frame(x = 1:3, pct = percent(c(0.1, 0.2, 0.3))) # works seamlessly
# Type-stable operations
vec_c(percent(0.1), percent(0.2)) # predictable behavior
vec_cast(0.5, percent()) # explicit, safe casting
```
#### 2. General Objects (Complex Data Structures)
**Use S7 when:**
- ✓ NEW projects that need formal classes
- ✓ Want property validation and safe property access (@)
- ✓ Need multiple dispatch (beyond S3's double dispatch)
- ✓ Converting from S3 and want better structure
- ✓ Building class hierarchies with inheritance
- ✓ Want better error messages and discoverability
```r
# Complex validation needs
Range <- new_class("Range",
properties = list(start = class_double, end = class_double),
validator = function(self) {
if (self@end < self@start) "@end must be >= @start"
}
)
# Multiple dispatch needs
method(generic, list(ClassA, ClassB)) <- function(x, y) ...
# Class hierarchies with clear inheritance
Child <- new_class("Child", parent = Parent)
```
**Use S3 when:**
- ✓ Simple classes with minimal structure needs
- ✓ Maximum compatibility and minimal dependencies
- ✓ Quick prototyping or internal classes
- ✓ Contributing to existing S3-based ecosystems
- ✓ Performance is absolutely critical (minimal overhead)
```r
# Simple classes without complex needs
new_simple <- function(x) structure(x, class = "simple")
print.simple <- function(x, ...) cat("Simple:", x)
```
**Use S4 when:**
- ✓ Working in Bioconductor ecosystem
- ✓ Need complex multiple inheritance (S7 doesn't support this)
- ✓ Existing S4 codebase that works well
**Use R6 when:**
- ✓ Need reference semantics (mutable objects)
- ✓ Building stateful objects
- ✓ Coming from OOP languages like Python/Java
- ✓ Need encapsulation and private methods
## Detailed S7 vs S3 Comparison
| Feature | S3 | S7 | When S7 wins |
|---------|----|----|---------------|
| **Class definition** | Informal (convention) | Formal (`new_class()`) | Need guaranteed structure |
| **Property access** | `$` or `attr()` (unsafe) | `@` (safe, validated) | Property validation matters |
| **Validation** | Manual, inconsistent | Built-in validators | Data integrity important |
| **Method discovery** | Hard to find methods | Clear method printing | Developer experience matters |
| **Multiple dispatch** | Limited (base generics) | Full multiple dispatch | Complex method dispatch needed |
| **Inheritance** | Informal, `NextMethod()` | Explicit `super()` | Predictable inheritance needed |
| **Migration cost** | - | Low (1-2 hours) | Want better structure |
| **Performance** | Fastest | ~Same as S3 | Performance difference negligible |
| **Compatibility** | Full S3 | Full S3 + S7 | Need both old and new patterns |
## vctrs for Vector Classes
### Basic Vector Class
```r
# Constructor (low-level)
new_percent <- function(x = double()) {
vec_assert(x, double())
new_vctr(x, class = "pkg_percent")
}
# Helper (user-facing)
percent <- function(x = double()) {
x <- vec_cast(x, double())
new_percent(x)
}
# Format method
format.pkg_percent <- function(x, ...) {
paste0(vec_data(x) * 100, "%")
}
```
### Coercion Methods
```r
# Self-coercion
vec_ptype2.pkg_percent.pkg_percent <- function(x, y, ...) {
new_percent()
}
# With double
vec_ptype2.pkg_percent.double <- function(x, y, ...) double()
vec_ptype2.double.pkg_percent <- function(x, y, ...) double()
# Casting
vec_cast.pkg_percent.double <- function(x, to, ...) {
new_percent(x)
}
vec_cast.double.pkg_percent <- function(x, to, ...) {
vec_data(x)
}
```
## S3 Basics
### Creating S3 Classes
```r
# Constructor
new_myclass <- function(x, y) {
structure(
list(x = x, y = y),
class = "myclass"
)
}
# Methods
print.myclass <- function(x, ...) {
cat("myclass object\n")
cat("x:", x$x, "\n")
cat("y:", x$y, "\n")
}
summary.myclass <- function(object, ...) {
list(x = object$x, y = object$y)
}
```
### Generic Functions
```r
# Create generic
my_generic <- function(x, ...) {
UseMethod("my_generic")
}
# Default method
my_generic.default <- function(x, ...) {
stop("No method for class ", class(x))
}
# Specific method
my_generic.myclass <- function(x, ...) {
# Implementation
}
```
## R6 Classes
### Basic R6 Class
```r
library(R6)
MyClass <- R6Class("MyClass",
public = list(
x = NULL,
y = NULL,
initialize = function(x, y) {
self$x <- x
self$y <- y
},
add = function() {
self$x + self$y
}
),
private = list(
internal_value = NULL
)
)
# Usage
obj <- MyClass$new(1, 2)
obj$add() # 3
```
## Migration Strategy
### S3 → S7
Usually 1-2 hours work, keeps full compatibility:
```r
# S3 version
new_range <- function(start, end) {
structure(
list(start = start, end = end),
class = "range"
)
}
# S7 version
Range <- new_class("Range",
properties = list(
start = class_double,
end = class_double
)
)
```
### S4 → S7
More complex, evaluate if S4 features are actually needed.
### Base R → vctrs
For vector-like classes, significant benefits in type stability and data frame integration.
### Combining Approaches
S7 classes can use vctrs principles internally for vector-like properties.
## When to Use Each System
### Use S7 for:
- New projects needing formal OOP
- Class validation and type safety
- Multiple dispatch
- Better developer experience
### Use vctrs for:
- Vector-like classes
- Data frame columns
- Type-stable operations
- Tidyverse integration
### Use S3 for:
- Simple classes
- Maximum compatibility
- Existing S3 ecosystems
- Quick prototypes
### Use S4 for:
- Bioconductor packages
- Complex multiple inheritance
- Existing S4 codebases
### Use R6 for:
- Mutable state
- Reference semantics
- Encapsulation needs
- Coming from OOP languages