311 lines
6.9 KiB
Markdown
311 lines
6.9 KiB
Markdown
# Object-Oriented Programming in R
|
|
|
|
## S7: Modern OOP for New Projects
|
|
|
|
S7 combines S3 simplicity with S4 structure:
|
|
- Formal class definitions with automatic validation
|
|
- Compatible with existing S3 code
|
|
- Better error messages and discoverability
|
|
|
|
```r
|
|
# S7 class definition
|
|
Range <- new_class("Range",
|
|
properties = list(
|
|
start = class_double,
|
|
end = class_double
|
|
),
|
|
validator = function(self) {
|
|
if (self@end < self@start) {
|
|
"@end must be >= @start"
|
|
}
|
|
}
|
|
)
|
|
|
|
# Usage - constructor and property access
|
|
x <- Range(start = 1, end = 10)
|
|
x@start # 1
|
|
x@end <- 20 # automatic validation
|
|
|
|
# Methods
|
|
inside <- new_generic("inside", "x")
|
|
method(inside, Range) <- function(x, y) {
|
|
y >= x@start & y <= x@end
|
|
}
|
|
```
|
|
|
|
## OOP System Decision Matrix
|
|
|
|
### Decision Tree: What Are You Building?
|
|
|
|
#### 1. Vector-like Objects
|
|
|
|
**Use vctrs when:**
|
|
- ✓ Need data frame integration (columns/rows)
|
|
- ✓ Want type-stable vector operations
|
|
- ✓ Building factor-like, date-like, or numeric-like classes
|
|
- ✓ Need consistent coercion/casting behavior
|
|
- ✓ Working with existing tidyverse infrastructure
|
|
|
|
**Examples:** custom date classes, units, categorical data
|
|
|
|
```r
|
|
# Vector-like behavior in data frames
|
|
percent <- new_vctr(0.5, class = "percentage")
|
|
data.frame(x = 1:3, pct = percent(c(0.1, 0.2, 0.3))) # works seamlessly
|
|
|
|
# Type-stable operations
|
|
vec_c(percent(0.1), percent(0.2)) # predictable behavior
|
|
vec_cast(0.5, percent()) # explicit, safe casting
|
|
```
|
|
|
|
#### 2. General Objects (Complex Data Structures)
|
|
|
|
**Use S7 when:**
|
|
- ✓ NEW projects that need formal classes
|
|
- ✓ Want property validation and safe property access (@)
|
|
- ✓ Need multiple dispatch (beyond S3's double dispatch)
|
|
- ✓ Converting from S3 and want better structure
|
|
- ✓ Building class hierarchies with inheritance
|
|
- ✓ Want better error messages and discoverability
|
|
|
|
```r
|
|
# Complex validation needs
|
|
Range <- new_class("Range",
|
|
properties = list(start = class_double, end = class_double),
|
|
validator = function(self) {
|
|
if (self@end < self@start) "@end must be >= @start"
|
|
}
|
|
)
|
|
|
|
# Multiple dispatch needs
|
|
method(generic, list(ClassA, ClassB)) <- function(x, y) ...
|
|
|
|
# Class hierarchies with clear inheritance
|
|
Child <- new_class("Child", parent = Parent)
|
|
```
|
|
|
|
**Use S3 when:**
|
|
- ✓ Simple classes with minimal structure needs
|
|
- ✓ Maximum compatibility and minimal dependencies
|
|
- ✓ Quick prototyping or internal classes
|
|
- ✓ Contributing to existing S3-based ecosystems
|
|
- ✓ Performance is absolutely critical (minimal overhead)
|
|
|
|
```r
|
|
# Simple classes without complex needs
|
|
new_simple <- function(x) structure(x, class = "simple")
|
|
print.simple <- function(x, ...) cat("Simple:", x)
|
|
```
|
|
|
|
**Use S4 when:**
|
|
- ✓ Working in Bioconductor ecosystem
|
|
- ✓ Need complex multiple inheritance (S7 doesn't support this)
|
|
- ✓ Existing S4 codebase that works well
|
|
|
|
**Use R6 when:**
|
|
- ✓ Need reference semantics (mutable objects)
|
|
- ✓ Building stateful objects
|
|
- ✓ Coming from OOP languages like Python/Java
|
|
- ✓ Need encapsulation and private methods
|
|
|
|
## Detailed S7 vs S3 Comparison
|
|
|
|
| Feature | S3 | S7 | When S7 wins |
|
|
|---------|----|----|---------------|
|
|
| **Class definition** | Informal (convention) | Formal (`new_class()`) | Need guaranteed structure |
|
|
| **Property access** | `$` or `attr()` (unsafe) | `@` (safe, validated) | Property validation matters |
|
|
| **Validation** | Manual, inconsistent | Built-in validators | Data integrity important |
|
|
| **Method discovery** | Hard to find methods | Clear method printing | Developer experience matters |
|
|
| **Multiple dispatch** | Limited (base generics) | Full multiple dispatch | Complex method dispatch needed |
|
|
| **Inheritance** | Informal, `NextMethod()` | Explicit `super()` | Predictable inheritance needed |
|
|
| **Migration cost** | - | Low (1-2 hours) | Want better structure |
|
|
| **Performance** | Fastest | ~Same as S3 | Performance difference negligible |
|
|
| **Compatibility** | Full S3 | Full S3 + S7 | Need both old and new patterns |
|
|
|
|
## vctrs for Vector Classes
|
|
|
|
### Basic Vector Class
|
|
|
|
```r
|
|
# Constructor (low-level)
|
|
new_percent <- function(x = double()) {
|
|
vec_assert(x, double())
|
|
new_vctr(x, class = "pkg_percent")
|
|
}
|
|
|
|
# Helper (user-facing)
|
|
percent <- function(x = double()) {
|
|
x <- vec_cast(x, double())
|
|
new_percent(x)
|
|
}
|
|
|
|
# Format method
|
|
format.pkg_percent <- function(x, ...) {
|
|
paste0(vec_data(x) * 100, "%")
|
|
}
|
|
```
|
|
|
|
### Coercion Methods
|
|
|
|
```r
|
|
# Self-coercion
|
|
vec_ptype2.pkg_percent.pkg_percent <- function(x, y, ...) {
|
|
new_percent()
|
|
}
|
|
|
|
# With double
|
|
vec_ptype2.pkg_percent.double <- function(x, y, ...) double()
|
|
vec_ptype2.double.pkg_percent <- function(x, y, ...) double()
|
|
|
|
# Casting
|
|
vec_cast.pkg_percent.double <- function(x, to, ...) {
|
|
new_percent(x)
|
|
}
|
|
vec_cast.double.pkg_percent <- function(x, to, ...) {
|
|
vec_data(x)
|
|
}
|
|
```
|
|
|
|
## S3 Basics
|
|
|
|
### Creating S3 Classes
|
|
|
|
```r
|
|
# Constructor
|
|
new_myclass <- function(x, y) {
|
|
structure(
|
|
list(x = x, y = y),
|
|
class = "myclass"
|
|
)
|
|
}
|
|
|
|
# Methods
|
|
print.myclass <- function(x, ...) {
|
|
cat("myclass object\n")
|
|
cat("x:", x$x, "\n")
|
|
cat("y:", x$y, "\n")
|
|
}
|
|
|
|
summary.myclass <- function(object, ...) {
|
|
list(x = object$x, y = object$y)
|
|
}
|
|
```
|
|
|
|
### Generic Functions
|
|
|
|
```r
|
|
# Create generic
|
|
my_generic <- function(x, ...) {
|
|
UseMethod("my_generic")
|
|
}
|
|
|
|
# Default method
|
|
my_generic.default <- function(x, ...) {
|
|
stop("No method for class ", class(x))
|
|
}
|
|
|
|
# Specific method
|
|
my_generic.myclass <- function(x, ...) {
|
|
# Implementation
|
|
}
|
|
```
|
|
|
|
## R6 Classes
|
|
|
|
### Basic R6 Class
|
|
|
|
```r
|
|
library(R6)
|
|
|
|
MyClass <- R6Class("MyClass",
|
|
public = list(
|
|
x = NULL,
|
|
y = NULL,
|
|
|
|
initialize = function(x, y) {
|
|
self$x <- x
|
|
self$y <- y
|
|
},
|
|
|
|
add = function() {
|
|
self$x + self$y
|
|
}
|
|
),
|
|
|
|
private = list(
|
|
internal_value = NULL
|
|
)
|
|
)
|
|
|
|
# Usage
|
|
obj <- MyClass$new(1, 2)
|
|
obj$add() # 3
|
|
```
|
|
|
|
## Migration Strategy
|
|
|
|
### S3 → S7
|
|
|
|
Usually 1-2 hours work, keeps full compatibility:
|
|
|
|
```r
|
|
# S3 version
|
|
new_range <- function(start, end) {
|
|
structure(
|
|
list(start = start, end = end),
|
|
class = "range"
|
|
)
|
|
}
|
|
|
|
# S7 version
|
|
Range <- new_class("Range",
|
|
properties = list(
|
|
start = class_double,
|
|
end = class_double
|
|
)
|
|
)
|
|
```
|
|
|
|
### S4 → S7
|
|
|
|
More complex, evaluate if S4 features are actually needed.
|
|
|
|
### Base R → vctrs
|
|
|
|
For vector-like classes, significant benefits in type stability and data frame integration.
|
|
|
|
### Combining Approaches
|
|
|
|
S7 classes can use vctrs principles internally for vector-like properties.
|
|
|
|
## When to Use Each System
|
|
|
|
### Use S7 for:
|
|
- New projects needing formal OOP
|
|
- Class validation and type safety
|
|
- Multiple dispatch
|
|
- Better developer experience
|
|
|
|
### Use vctrs for:
|
|
- Vector-like classes
|
|
- Data frame columns
|
|
- Type-stable operations
|
|
- Tidyverse integration
|
|
|
|
### Use S3 for:
|
|
- Simple classes
|
|
- Maximum compatibility
|
|
- Existing S3 ecosystems
|
|
- Quick prototypes
|
|
|
|
### Use S4 for:
|
|
- Bioconductor packages
|
|
- Complex multiple inheritance
|
|
- Existing S4 codebases
|
|
|
|
### Use R6 for:
|
|
- Mutable state
|
|
- Reference semantics
|
|
- Encapsulation needs
|
|
- Coming from OOP languages
|