Initial commit
This commit is contained in:
13
.claude-plugin/plugin.json
Normal file
13
.claude-plugin/plugin.json
Normal file
@@ -0,0 +1,13 @@
|
||||
{
|
||||
"name": "catalyst-analytics",
|
||||
"description": "Product analytics with PostHog MCP integration. Enable when analyzing user behavior, conversion metrics, and product usage. ~40k context tokens when enabled.",
|
||||
"version": "1.0.1",
|
||||
"author": {
|
||||
"name": "Coalesce Labs",
|
||||
"email": "hello@coalesce.dev",
|
||||
"url": "https://github.com/coalesce-labs"
|
||||
},
|
||||
"commands": [
|
||||
"./commands"
|
||||
]
|
||||
}
|
||||
3
README.md
Normal file
3
README.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# catalyst-analytics
|
||||
|
||||
Product analytics with PostHog MCP integration. Enable when analyzing user behavior, conversion metrics, and product usage. ~40k context tokens when enabled.
|
||||
120
commands/analyze_user_behavior.md
Normal file
120
commands/analyze_user_behavior.md
Normal file
@@ -0,0 +1,120 @@
|
||||
---
|
||||
description: Analyze user behavior patterns and cohorts using PostHog
|
||||
category: analytics
|
||||
tools: Task, TodoWrite
|
||||
model: inherit
|
||||
version: 1.0.0
|
||||
---
|
||||
|
||||
# Analyze User Behavior
|
||||
|
||||
Query PostHog to understand user behavior patterns, cohorts, and product usage.
|
||||
|
||||
## Prerequisites
|
||||
|
||||
- PostHog MCP must be enabled (this plugin should be enabled)
|
||||
- `POSTHOG_AUTH_HEADER` environment variable configured
|
||||
- Access to PostHog project
|
||||
|
||||
## Usage
|
||||
|
||||
```bash
|
||||
/analyze-user-behavior <query>
|
||||
|
||||
Examples:
|
||||
/analyze-user-behavior "checkout abandonment last 30 days"
|
||||
/analyze-user-behavior "feature adoption for new dashboard"
|
||||
/analyze-user-behavior "user retention cohorts by signup month"
|
||||
```
|
||||
|
||||
## What This Command Does
|
||||
|
||||
Uses PostHog MCP tools to:
|
||||
|
||||
1. Query user events and properties
|
||||
2. Analyze cohorts and segments
|
||||
3. Calculate conversion metrics
|
||||
4. Identify behavior patterns
|
||||
5. Generate insights with charts/data
|
||||
|
||||
## Available PostHog Capabilities
|
||||
|
||||
When this plugin is enabled, you have access to ~43 PostHog tools:
|
||||
|
||||
**User Analysis**:
|
||||
|
||||
- Query user properties and events
|
||||
- Segment users by behavior
|
||||
- Track user journeys
|
||||
- Analyze cohort retention
|
||||
|
||||
**Product Metrics**:
|
||||
|
||||
- Feature usage tracking
|
||||
- Conversion funnel analysis
|
||||
- A/B test results
|
||||
- Session replay analysis
|
||||
|
||||
**Trends & Insights**:
|
||||
|
||||
- Event trends over time
|
||||
- User engagement metrics
|
||||
- Feature adoption rates
|
||||
- Custom dashboard queries
|
||||
|
||||
## Example Queries
|
||||
|
||||
### Conversion Analysis
|
||||
|
||||
```bash
|
||||
/analyze-user-behavior "Show conversion rate from signup to first purchase, broken down by traffic source"
|
||||
```
|
||||
|
||||
### Feature Adoption
|
||||
|
||||
```bash
|
||||
/analyze-user-behavior "How many users adopted the new search feature in the last week?"
|
||||
```
|
||||
|
||||
### Retention Cohorts
|
||||
|
||||
```bash
|
||||
/analyze-user-behavior "Show weekly retention for users who signed up in December 2024"
|
||||
```
|
||||
|
||||
### User Journey
|
||||
|
||||
```bash
|
||||
/analyze-user-behavior "What's the typical path users take before upgrading to paid plan?"
|
||||
```
|
||||
|
||||
## Output Format
|
||||
|
||||
The command will:
|
||||
|
||||
1. Translate your natural language query to PostHog API calls
|
||||
2. Fetch relevant data
|
||||
3. Present findings with:
|
||||
- Key metrics and numbers
|
||||
- Trends and patterns
|
||||
- Visualizations (when possible)
|
||||
- Actionable insights
|
||||
|
||||
## Tips
|
||||
|
||||
- Be specific about time ranges ("last 30 days", "this quarter")
|
||||
- Mention specific events or features by name
|
||||
- Ask for comparisons ("vs last month", "broken down by...")
|
||||
- Request segmentation ("by country", "by plan type")
|
||||
|
||||
## Context Cost
|
||||
|
||||
**This plugin adds ~40,645 tokens** to your context window. Disable when not analyzing metrics:
|
||||
|
||||
```bash
|
||||
/plugin disable catalyst-analytics
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
**See also**: `/product-metrics`, `/segment-analysis`
|
||||
118
commands/product_metrics.md
Normal file
118
commands/product_metrics.md
Normal file
@@ -0,0 +1,118 @@
|
||||
---
|
||||
description: View key product metrics, KPIs, and conversion rates from PostHog
|
||||
category: analytics
|
||||
tools: Task, TodoWrite
|
||||
model: inherit
|
||||
version: 1.0.0
|
||||
---
|
||||
|
||||
# Product Metrics Dashboard
|
||||
|
||||
Query PostHog for key product metrics, KPIs, and performance indicators.
|
||||
|
||||
## Usage
|
||||
|
||||
```bash
|
||||
/product-metrics [metric-type] [time-range]
|
||||
|
||||
Examples:
|
||||
/product-metrics "overall KPIs last 30 days"
|
||||
/product-metrics "conversion rates this quarter"
|
||||
/product-metrics "feature usage breakdown this week"
|
||||
```
|
||||
|
||||
## Available Metrics
|
||||
|
||||
### Conversion Metrics
|
||||
|
||||
- Signup conversion rate
|
||||
- Trial to paid conversion
|
||||
- Checkout completion rate
|
||||
- Feature activation rate
|
||||
|
||||
### Engagement Metrics
|
||||
|
||||
- Daily/Weekly/Monthly Active Users (DAU/WAU/MAU)
|
||||
- Session duration
|
||||
- Feature usage frequency
|
||||
- User retention rates
|
||||
|
||||
### Business Metrics
|
||||
|
||||
- Revenue per user
|
||||
- Customer acquisition cost
|
||||
- Lifetime value
|
||||
- Churn rate
|
||||
|
||||
### Feature Metrics
|
||||
|
||||
- Feature adoption rate
|
||||
- Time to first use
|
||||
- Feature retention
|
||||
- Power user identification
|
||||
|
||||
## Example Queries
|
||||
|
||||
### Overall Dashboard
|
||||
|
||||
```bash
|
||||
/product-metrics "Show me our key metrics for last month: MAU, conversion rates, and top features"
|
||||
```
|
||||
|
||||
### Conversion Funnel
|
||||
|
||||
```bash
|
||||
/product-metrics "Breakdown of our signup to paid funnel with drop-off rates at each step"
|
||||
```
|
||||
|
||||
### Feature Performance
|
||||
|
||||
```bash
|
||||
/product-metrics "Compare usage of our top 5 features over the last quarter"
|
||||
```
|
||||
|
||||
### Cohort Performance
|
||||
|
||||
```bash
|
||||
/product-metrics "How do our December signups compare to November in terms of activation and retention?"
|
||||
```
|
||||
|
||||
## Output Format
|
||||
|
||||
Results typically include:
|
||||
|
||||
- **Metric values** with trend indicators (↑↓)
|
||||
- **Comparisons** to previous periods
|
||||
- **Breakdowns** by segment when relevant
|
||||
- **Top performers** and bottom performers
|
||||
- **Recommendations** based on data
|
||||
|
||||
## Time Range Options
|
||||
|
||||
- `today`, `yesterday`
|
||||
- `last 7 days`, `last 30 days`, `last 90 days`
|
||||
- `this week`, `last week`
|
||||
- `this month`, `last month`, `this quarter`
|
||||
- Custom: `2024-01-01 to 2024-03-31`
|
||||
|
||||
## Segmentation
|
||||
|
||||
Add segmentation to any query:
|
||||
|
||||
```bash
|
||||
/product-metrics "MAU by country"
|
||||
/product-metrics "conversion rates by traffic source"
|
||||
/product-metrics "feature usage by plan type"
|
||||
```
|
||||
|
||||
## Context Management
|
||||
|
||||
This plugin consumes ~40k tokens. Disable after viewing metrics:
|
||||
|
||||
```bash
|
||||
/plugin disable catalyst-analytics
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
**See also**: `/analyze-user-behavior`, `/segment-analysis`
|
||||
138
commands/segment_analysis.md
Normal file
138
commands/segment_analysis.md
Normal file
@@ -0,0 +1,138 @@
|
||||
---
|
||||
description: Analyze user segments and cohorts for targeted insights
|
||||
category: analytics
|
||||
tools: Task, TodoWrite
|
||||
model: inherit
|
||||
version: 1.0.0
|
||||
---
|
||||
|
||||
# Segment Analysis
|
||||
|
||||
Deep-dive into specific user segments, cohorts, or customer groups using PostHog data.
|
||||
|
||||
## Usage
|
||||
|
||||
```bash
|
||||
/segment-analysis <segment-description>
|
||||
|
||||
Examples:
|
||||
/segment-analysis "users from paid plans vs free plans"
|
||||
/segment-analysis "power users who use feature X daily"
|
||||
/segment-analysis "users who churned in last 30 days"
|
||||
/segment-analysis "cohort: signed up in Q4 2024"
|
||||
```
|
||||
|
||||
## What This Analyzes
|
||||
|
||||
### User Segments
|
||||
|
||||
- By plan type (free, pro, enterprise)
|
||||
- By geography (country, region)
|
||||
- By acquisition source (organic, paid, referral)
|
||||
- By behavior (power users, casual users, at-risk)
|
||||
|
||||
### Cohort Analysis
|
||||
|
||||
- By signup date (monthly, weekly cohorts)
|
||||
- By first feature used
|
||||
- By activation milestone reached
|
||||
- By engagement level
|
||||
|
||||
### Comparison Analysis
|
||||
|
||||
- Segment A vs Segment B
|
||||
- Before/after feature launch
|
||||
- Treatment vs control (A/B tests)
|
||||
- Time period comparisons
|
||||
|
||||
## Example Analyses
|
||||
|
||||
### Plan Comparison
|
||||
|
||||
```bash
|
||||
/segment-analysis "Compare engagement patterns between free and paid users: session frequency, feature usage, retention"
|
||||
```
|
||||
|
||||
### Power User Identification
|
||||
|
||||
```bash
|
||||
/segment-analysis "Identify our power users: who are they, what features do they use, what's their profile?"
|
||||
```
|
||||
|
||||
### Churn Analysis
|
||||
|
||||
```bash
|
||||
/segment-analysis "Analyze users who churned: what were their last actions, which features didn't they use?"
|
||||
```
|
||||
|
||||
### Geographic Performance
|
||||
|
||||
```bash
|
||||
/segment-analysis "Compare conversion rates and engagement across our top 5 countries"
|
||||
```
|
||||
|
||||
### Cohort Retention
|
||||
|
||||
```bash
|
||||
/segment-analysis "Show retention curves for each monthly signup cohort in 2024"
|
||||
```
|
||||
|
||||
## Output Format
|
||||
|
||||
Analysis typically includes:
|
||||
|
||||
- **Segment characteristics** (size, demographics, behavior)
|
||||
- **Key metrics** for each segment
|
||||
- **Comparative insights** between segments
|
||||
- **Behavior patterns** unique to segment
|
||||
- **Recommendations** for targeting or improvement
|
||||
|
||||
## Segmentation Criteria
|
||||
|
||||
You can segment by:
|
||||
|
||||
- **Demographics**: Country, language, device type
|
||||
- **Behavior**: Feature usage, session frequency, engagement score
|
||||
- **Business**: Plan type, payment history, LTV
|
||||
- **Temporal**: Signup date, last active, tenure
|
||||
- **Custom**: Any event or property in PostHog
|
||||
|
||||
## Advanced Analysis
|
||||
|
||||
### Multi-dimensional Segmentation
|
||||
|
||||
```bash
|
||||
/segment-analysis "Power users (5+ sessions/week) from enterprise plans who use feature X"
|
||||
```
|
||||
|
||||
### Funnel by Segment
|
||||
|
||||
```bash
|
||||
/segment-analysis "Compare signup to activation funnel for organic vs paid traffic"
|
||||
```
|
||||
|
||||
### Retention by Segment
|
||||
|
||||
```bash
|
||||
/segment-analysis "30-day retention by initial feature used"
|
||||
```
|
||||
|
||||
## Tips for Better Analysis
|
||||
|
||||
1. **Be specific** - Define your segment clearly
|
||||
2. **Ask for comparisons** - "vs" between segments reveals insights
|
||||
3. **Look for patterns** - What makes segments different?
|
||||
4. **Consider time** - Trends over time matter
|
||||
5. **Combine criteria** - Multi-dimensional segments can be revealing
|
||||
|
||||
## Context Cost
|
||||
|
||||
Plugin uses ~40k tokens. Disable when analysis is complete:
|
||||
|
||||
```bash
|
||||
/plugin disable catalyst-analytics
|
||||
```
|
||||
|
||||
---
|
||||
|
||||
**See also**: `/analyze-user-behavior`, `/product-metrics`
|
||||
53
plugin.lock.json
Normal file
53
plugin.lock.json
Normal file
@@ -0,0 +1,53 @@
|
||||
{
|
||||
"$schema": "internal://schemas/plugin.lock.v1.json",
|
||||
"pluginId": "gh:coalesce-labs/catalyst:plugins/analytics",
|
||||
"normalized": {
|
||||
"repo": null,
|
||||
"ref": "refs/tags/v20251128.0",
|
||||
"commit": "80ee3ecc04f19bc2738e810b9dc574a1027cc691",
|
||||
"treeHash": "23a8f13c3a3cf4a4c49a8d238f03ea71d3308687c821fdcb46bd62e1ee58d0d4",
|
||||
"generatedAt": "2025-11-28T10:15:41.672364Z",
|
||||
"toolVersion": "publish_plugins.py@0.2.0"
|
||||
},
|
||||
"origin": {
|
||||
"remote": "git@github.com:zhongweili/42plugin-data.git",
|
||||
"branch": "master",
|
||||
"commit": "aa1497ed0949fd50e99e70d6324a29c5b34f9390",
|
||||
"repoRoot": "/Users/zhongweili/projects/openmind/42plugin-data"
|
||||
},
|
||||
"manifest": {
|
||||
"name": "catalyst-analytics",
|
||||
"description": "Product analytics with PostHog MCP integration. Enable when analyzing user behavior, conversion metrics, and product usage. ~40k context tokens when enabled.",
|
||||
"version": "1.0.1"
|
||||
},
|
||||
"content": {
|
||||
"files": [
|
||||
{
|
||||
"path": "README.md",
|
||||
"sha256": "11813685b5be2a5462d8f8f5de503f59a364fde7d2cf0cbd080cbfc80d888041"
|
||||
},
|
||||
{
|
||||
"path": ".claude-plugin/plugin.json",
|
||||
"sha256": "d00f31a72cb325d7953dd74a2f64ead2a67d84918c9a0c3b6d42090c960e0d21"
|
||||
},
|
||||
{
|
||||
"path": "commands/analyze_user_behavior.md",
|
||||
"sha256": "2c67d0e791b8e97334b6d3d0232a8924d5b4006f5816831e5749f0bc2c1e402a"
|
||||
},
|
||||
{
|
||||
"path": "commands/segment_analysis.md",
|
||||
"sha256": "5161a255085b4cd148498829aba1955245c6c1ee3a164c1978358c75524860e9"
|
||||
},
|
||||
{
|
||||
"path": "commands/product_metrics.md",
|
||||
"sha256": "a029516e0f44f2f73ac3d291702b01582de249751b4a2108922db21eedae65f5"
|
||||
}
|
||||
],
|
||||
"dirSha256": "23a8f13c3a3cf4a4c49a8d238f03ea71d3308687c821fdcb46bd62e1ee58d0d4"
|
||||
},
|
||||
"security": {
|
||||
"scannedAt": null,
|
||||
"scannerVersion": null,
|
||||
"flags": []
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user