Files
gh-bejranonda-llm-autonomou…/skills/web-search-fallback/INTEGRATION.md
2025-11-29 18:00:50 +08:00

290 lines
7.2 KiB
Markdown

# Web Search Fallback Integration Guide
## Quick Start
This skill provides robust web search capabilities when the built-in WebSearch tool fails or hits limits.
## Integration in Agents
### Basic Fallback Pattern
```bash
# Try WebSearch first, fallback if it fails
search_query="your search terms"
# Attempt with WebSearch
if result=$(WebSearch "$search_query"); then
echo "$result"
else
# Fallback to bash+curl method
result=$(python3 lib/web_search_fallback.py "$search_query" -n 10 -t json)
echo "$result"
fi
```
### Advanced Integration with Error Detection
```python
# In Python-based agents
from lib.web_search_fallback import WebSearchFallback
def search_with_fallback(query, num_results=10):
try:
# Try primary WebSearch
return web_search(query)
except (APILimitError, ValidationError, ToolError) as e:
# Use fallback
print(f"WebSearch failed: {e}, using fallback")
searcher = WebSearchFallback()
return searcher.search(query, num_results=num_results)
```
### Orchestrator Integration
The orchestrator can automatically delegate to this skill when:
```yaml
trigger_conditions:
- WebSearch returns error code
- User mentions "search fallback"
- Pattern database shows WebSearch failures > 3 in last hour
- Bulk search operations (> 20 queries)
```
## Usage Patterns
### 1. Rate Limit Mitigation
```bash
# For bulk searches, use fallback with delays
for query in "${queries[@]}"; do
python3 lib/web_search_fallback.py "$query" -n 5
sleep 2 # Prevent rate limiting
done
```
### 2. Cross-Platform Compatibility
```bash
# Detect platform and use appropriate method
if [[ "$OSTYPE" == "msys" ]] || [[ "$OSTYPE" == "cygwin" ]]; then
# Windows - use Python
python3 lib/web_search_fallback.py "$query"
else
# Unix-like - use bash or Python
bash lib/web_search_fallback.sh "$query"
fi
```
### 3. Result Parsing
```bash
# Extract only titles
titles=$(python3 lib/web_search_fallback.py "$query" -t titles)
# Get JSON for programmatic use
json_results=$(python3 lib/web_search_fallback.py "$query" -t json)
# Parse JSON with jq if available
echo "$json_results" | jq '.[] | .title'
```
## Error Handling
### Common Errors and Solutions
| Error | Cause | Solution |
|-------|-------|----------|
| Connection timeout | Network issues | Retry with exponential backoff |
| Empty results | Query too specific | Broaden search terms |
| HTML parsing fails | Website structure changed | Try alternative search engine |
| Cache permission denied | Directory permissions | Create cache dir with proper permissions |
### Graceful Degradation
```bash
# Multiple fallback levels
search_result=""
# Level 1: WebSearch API
if ! search_result=$(WebSearch "$query" 2>/dev/null); then
# Level 2: DuckDuckGo
if ! search_result=$(python3 lib/web_search_fallback.py "$query" -e duckduckgo 2>/dev/null); then
# Level 3: Searx
if ! search_result=$(python3 lib/web_search_fallback.py "$query" -e searx 2>/dev/null); then
# Level 4: Return error message
search_result="All search methods failed. Please try again later."
fi
fi
fi
echo "$search_result"
```
## Performance Optimization
### Caching Strategy
```bash
# Use cache for repeated queries
python3 lib/web_search_fallback.py "$query" # First query cached
# Subsequent queries use cache (60 min TTL)
python3 lib/web_search_fallback.py "$query" # Returns instantly
# Force fresh results when needed
python3 lib/web_search_fallback.py "$query" --no-cache
```
### Parallel Searches
```bash
# Run multiple searches in parallel
search_terms=("term1" "term2" "term3")
for term in "${search_terms[@]}"; do
python3 lib/web_search_fallback.py "$term" -n 5 &
done
wait # Wait for all searches to complete
```
## Agent-Specific Examples
### For research-analyzer Agent
```bash
# Comprehensive research with fallback
research_topic="quantum computing applications"
# Get multiple perspectives
ddg_results=$(python3 lib/web_search_fallback.py "$research_topic" -e duckduckgo -n 15)
searx_results=$(python3 lib/web_search_fallback.py "$research_topic" -e searx -n 10)
# Combine and deduplicate results
echo "$ddg_results" > /tmp/research_results.txt
echo "$searx_results" >> /tmp/research_results.txt
```
### For background-task-manager Agent
```bash
# Non-blocking search in background
{
python3 lib/web_search_fallback.py "$query" -n 20 > search_results.txt
echo "Search completed: $(wc -l < search_results.txt) results found"
} &
# Continue with other tasks while search runs
echo "Search running in background..."
```
## Testing the Integration
### Unit Test
```bash
# Test fallback functionality
test_query="test search fallback"
# Test Python implementation
python3 lib/web_search_fallback.py "$test_query" -n 1 -v
# Test bash implementation
bash lib/web_search_fallback.sh "$test_query" -n 1
# Test cache functionality
python3 lib/web_search_fallback.py "$test_query" # Creates cache
python3 lib/web_search_fallback.py "$test_query" # Uses cache
# Verify cache file exists
ls -la .claude-patterns/search-cache/
```
### Integration Test
```bash
# Simulate WebSearch failure and fallback
function test_search_with_fallback() {
local query="$1"
# Simulate WebSearch failure
if false; then # Always fails
echo "WebSearch result"
else
echo "WebSearch failed, using fallback..." >&2
python3 lib/web_search_fallback.py "$query" -n 3 -t titles
fi
}
test_search_with_fallback "integration test"
```
## Monitoring and Logging
### Track Fallback Usage
```python
# In pattern_storage.py integration
pattern = {
"task_type": "web_search",
"method_used": "fallback",
"search_engine": "duckduckgo",
"success": True,
"response_time": 2.3,
"cached": False,
"timestamp": "2024-01-01T10:00:00"
}
```
### Success Metrics
Monitor these metrics in the pattern database:
- Fallback trigger frequency
- Success rate by search engine
- Average response time
- Cache hit rate
- Error types and frequencies
## Best Practices
1. **Always try WebSearch first** - It's the primary tool
2. **Use caching wisely** - Enable for repeated queries, disable for fresh data
3. **Handle errors gracefully** - Multiple fallback levels
4. **Respect rate limits** - Add delays for bulk operations
5. **Parse results appropriately** - Use JSON for structured data
6. **Log fallback usage** - Track patterns for optimization
7. **Test regularly** - HTML structures may change
## Troubleshooting
### Debug Mode
```bash
# Enable verbose output for debugging
python3 lib/web_search_fallback.py "debug query" -v
# Check cache status
ls -la .claude-patterns/search-cache/
find .claude-patterns/search-cache/ -type f -mmin -60 # Files < 60 min old
# Test specific search engine
python3 lib/web_search_fallback.py "test" -e duckduckgo -v
python3 lib/web_search_fallback.py "test" -e searx -v
```
### Common Issues
1. **No results returned**
- Check internet connectivity
- Verify search engine is accessible
- Try different search terms
2. **Cache not working**
- Check directory permissions
- Verify disk space available
- Clear old cache files
3. **Parsing errors**
- HTML structure may have changed
- Update parsing patterns in script
- Try alternative search engine