288 lines
8.4 KiB
Markdown
288 lines
8.4 KiB
Markdown
---
|
|
name: model-detection
|
|
description: Universal model detection and capability assessment for optimal cross-model compatibility
|
|
version: 1.0.0
|
|
---
|
|
|
|
## Overview
|
|
|
|
This skill provides universal model detection and capability assessment to optimize the Autonomous Agent Plugin across different LLM models (Claude Sonnet, Claude 4.5, GLM-4.6, etc.).
|
|
|
|
## Model Detection Algorithm
|
|
|
|
### Primary Detection Methods
|
|
|
|
1. **System Context Analysis**:
|
|
```javascript
|
|
// Check for model indicators in system context
|
|
const modelIndicators = {
|
|
'claude-sonnet-4.5': { pattern: /sonnet.*4\.5|4\.5.*sonnet/i, confidence: 0.9 },
|
|
'claude-haiku-4.5': { pattern: /haiku.*4\.5|4\.5.*haiku/i, confidence: 0.9 },
|
|
'claude-opus-4.1': { pattern: /opus.*4\.1|4\.1.*opus/i, confidence: 0.9 },
|
|
'glm-4.6': { pattern: /glm|4\.6/i, confidence: 0.9 },
|
|
'claude-haiku': { pattern: /haiku(?!\.*4\.5)/i, confidence: 0.8 }
|
|
}
|
|
```
|
|
|
|
2. **Performance Pattern Recognition**:
|
|
```javascript
|
|
// Analyze execution patterns to identify model
|
|
const performanceSignatures = {
|
|
'claude-sonnet-4.5': { reasoning: 'nuanced', speed: 'fast', adaptability: 'high' },
|
|
'claude-haiku-4.5': { reasoning: 'focused', speed: 'very_fast', adaptability: 'high' },
|
|
'claude-opus-4.1': { reasoning: 'enhanced', speed: 'very_fast', adaptability: 'very_high' },
|
|
'glm-4.6': { reasoning: 'structured', speed: 'moderate', adaptability: 'medium' }
|
|
}
|
|
```
|
|
|
|
3. **Capability Assessment**:
|
|
```javascript
|
|
// Test specific capabilities
|
|
const capabilityTests = {
|
|
nuanced_reasoning: testAmbiguousScenario,
|
|
structured_execution: testLiteralInterpretation,
|
|
context_switching: testMultiTaskContext,
|
|
adaptive_learning: testPatternRecognition
|
|
}
|
|
```
|
|
|
|
## Model-Specific Configurations
|
|
|
|
### Claude Sonnet 4.5 Configuration
|
|
```json
|
|
{
|
|
"model_type": "claude-sonnet-4.5",
|
|
"capabilities": {
|
|
"reasoning_style": "nuanced",
|
|
"context_management": "adaptive",
|
|
"skill_loading": "progressive_disclosure",
|
|
"error_handling": "pattern_based",
|
|
"communication_style": "natural_flow"
|
|
},
|
|
"performance_targets": {
|
|
"execution_time_multiplier": 1.0,
|
|
"quality_score_target": 90,
|
|
"autonomy_level": "high",
|
|
"delegation_style": "parallel_context_merge"
|
|
},
|
|
"optimizations": {
|
|
"use_context_switching": true,
|
|
"apply_improvisation": true,
|
|
"weight_based_decisions": true,
|
|
"predictive_delegation": true
|
|
}
|
|
}
|
|
```
|
|
|
|
### Claude Haiku 4.5 Configuration
|
|
```json
|
|
{
|
|
"model_type": "claude-haiku-4.5",
|
|
"capabilities": {
|
|
"reasoning_style": "focused",
|
|
"context_management": "efficient",
|
|
"skill_loading": "selective_disclosure",
|
|
"error_handling": "fast_prevention",
|
|
"communication_style": "concise"
|
|
},
|
|
"performance_targets": {
|
|
"execution_time_multiplier": 0.8,
|
|
"quality_score_target": 88,
|
|
"autonomy_level": "medium",
|
|
"delegation_style": "focused_parallel"
|
|
},
|
|
"optimizations": {
|
|
"use_fast_execution": true,
|
|
"apply_focused_reasoning": true,
|
|
"efficient_delegation": true,
|
|
"streamlined_processing": true
|
|
}
|
|
}
|
|
```
|
|
|
|
### Claude Opus 4.1 Configuration
|
|
```json
|
|
{
|
|
"model_type": "claude-opus-4.1",
|
|
"capabilities": {
|
|
"reasoning_style": "enhanced",
|
|
"context_management": "predictive",
|
|
"skill_loading": "intelligent_progressive",
|
|
"error_handling": "predictive_prevention",
|
|
"communication_style": "insightful"
|
|
},
|
|
"performance_targets": {
|
|
"execution_time_multiplier": 0.9,
|
|
"quality_score_target": 95,
|
|
"autonomy_level": "very_high",
|
|
"delegation_style": "predictive_parallel"
|
|
},
|
|
"optimizations": {
|
|
"use_context_switching": true,
|
|
"apply_improvisation": true,
|
|
"anticipatory_actions": true,
|
|
"enhanced_pattern_learning": true
|
|
}
|
|
}
|
|
```
|
|
|
|
### GLM-4.6 Configuration
|
|
```json
|
|
{
|
|
"model_type": "glm-4.6",
|
|
"capabilities": {
|
|
"reasoning_style": "structured",
|
|
"context_management": "sequential",
|
|
"skill_loading": "complete_loading",
|
|
"error_handling": "rule_based",
|
|
"communication_style": "structured_explicit"
|
|
},
|
|
"performance_targets": {
|
|
"execution_time_multiplier": 1.25,
|
|
"quality_score_target": 88,
|
|
"autonomy_level": "medium",
|
|
"delegation_style": "sequential_clear"
|
|
},
|
|
"optimizations": {
|
|
"use_structured_decisions": true,
|
|
"explicit_instructions": true,
|
|
"sequential_processing": true,
|
|
"clear_handoffs": true
|
|
}
|
|
}
|
|
```
|
|
|
|
## Adaptive Execution Strategies
|
|
|
|
### Skill Loading Adaptation
|
|
|
|
**Claude Models**:
|
|
```javascript
|
|
function loadSkillsForClaude(skills) {
|
|
// Progressive disclosure with context merging
|
|
return skills.map(skill => ({
|
|
...skill,
|
|
loading_strategy: 'progressive',
|
|
context_aware: true,
|
|
weight_based: true
|
|
}));
|
|
}
|
|
```
|
|
|
|
**GLM Models**:
|
|
```javascript
|
|
function loadSkillsForGLM(skills) {
|
|
// Complete upfront loading with clear structure
|
|
return skills.map(skill => ({
|
|
...skill,
|
|
loading_strategy: 'complete',
|
|
explicit_criteria: true,
|
|
priority_sequenced: true
|
|
}));
|
|
}
|
|
```
|
|
|
|
### Communication Style Adaptation
|
|
|
|
**Output Formatting by Model**:
|
|
|
|
| Model | Terminal Style | File Report Style | Reasoning |
|
|
|-------|----------------|-------------------|-----------|
|
|
| Claude Sonnet | Natural flow | Insightful analysis | Nuanced communication |
|
|
| Claude 4.5 | Concise insights | Enhanced context | Predictive communication |
|
|
| GLM-4.6 | Structured lists | Detailed procedures | Explicit communication |
|
|
|
|
### Error Recovery Adaptation
|
|
|
|
**Claude Models**: Pattern-based prediction and contextual prevention
|
|
**GLM Models**: Rule-based detection and structured recovery protocols
|
|
|
|
## Capability Testing Functions
|
|
|
|
### Nuanced Reasoning Test
|
|
```javascript
|
|
function testNuancedReasoning() {
|
|
// Present ambiguous scenario requiring subtle judgment
|
|
// Evaluate response quality and contextual awareness
|
|
return score >= 0.8; // True for Claude models
|
|
}
|
|
```
|
|
|
|
### Structured Execution Test
|
|
```javascript
|
|
function testStructuredExecution() {
|
|
// Present clear, sequential task
|
|
// Evaluate adherence to structured approach
|
|
return score >= 0.8; // True for GLM models
|
|
}
|
|
```
|
|
|
|
## Model Detection Implementation
|
|
|
|
### Auto-Detection Function
|
|
```javascript
|
|
function detectModel() {
|
|
// Step 1: Check system context indicators
|
|
const contextResult = analyzeSystemContext();
|
|
|
|
// Step 2: Test capability patterns
|
|
const capabilityResult = testCapabilities();
|
|
|
|
// Step 3: Analyze performance signature
|
|
const performanceResult = analyzePerformancePattern();
|
|
|
|
// Step 4: Combine results with confidence scoring
|
|
return combineDetections(contextResult, capabilityResult, performanceResult);
|
|
}
|
|
```
|
|
|
|
### Configuration Loading
|
|
```javascript
|
|
function loadModelConfiguration(detectedModel) {
|
|
const baseConfig = getBaseModelConfig(detectedModel);
|
|
const adaptiveConfig = generateAdaptiveConfig(detectedModel);
|
|
return mergeConfigurations(baseConfig, adaptiveConfig);
|
|
}
|
|
```
|
|
|
|
## Usage Guidelines
|
|
|
|
### When to Apply Model Detection
|
|
1. **Plugin Initialization**: First load of any agent
|
|
2. **Agent Delegation**: Before delegating to specialized agents
|
|
3. **Skill Loading**: Before loading any skill package
|
|
4. **Error Recovery**: When selecting recovery strategy
|
|
5. **Performance Optimization**: When setting execution targets
|
|
|
|
### Integration Points
|
|
- **Orchestrator Agent**: Use for autonomous decision-making adaptation
|
|
- **All Specialized Agents**: Use for model-specific behavior
|
|
- **Skill System**: Use for loading strategy selection
|
|
- **Quality Controller**: Use for model-appropriate quality targets
|
|
|
|
## Fallback Strategy
|
|
|
|
If model detection fails:
|
|
1. **Default to Conservative Settings**: Use structured, explicit approach
|
|
2. **Basic Capability Tests**: Run simplified detection tests
|
|
3. **Universal Configuration**: Apply cross-model compatible settings
|
|
4. **Performance Monitoring**: Continuously assess and adapt
|
|
|
|
## Validation Metrics
|
|
|
|
### Detection Accuracy
|
|
- Target: >95% correct model identification
|
|
- Measurement: Compare detected vs actual model capabilities
|
|
- Validation: Test across all supported models
|
|
|
|
### Performance Improvement
|
|
- Target: >10% improvement for GLM models
|
|
- Target: >2% improvement for Claude models
|
|
- Measurement: Compare pre/post optimization performance
|
|
|
|
### Adaptation Success
|
|
- Target: >90% successful adaptation scenarios
|
|
- Measurement: Monitor successful autonomous operations
|
|
- Validation: Test with diverse task types
|
|
|
|
This skill ensures the Autonomous Agent Plugin performs optimally across all supported LLM models while maintaining backward compatibility and future-proofing for new models. |