Files
gh-bejranonda-llm-autonomou…/skills/model-detection/SKILL.md
2025-11-29 18:00:50 +08:00

288 lines
8.4 KiB
Markdown

---
name: model-detection
description: Universal model detection and capability assessment for optimal cross-model compatibility
version: 1.0.0
---
## Overview
This skill provides universal model detection and capability assessment to optimize the Autonomous Agent Plugin across different LLM models (Claude Sonnet, Claude 4.5, GLM-4.6, etc.).
## Model Detection Algorithm
### Primary Detection Methods
1. **System Context Analysis**:
```javascript
// Check for model indicators in system context
const modelIndicators = {
'claude-sonnet-4.5': { pattern: /sonnet.*4\.5|4\.5.*sonnet/i, confidence: 0.9 },
'claude-haiku-4.5': { pattern: /haiku.*4\.5|4\.5.*haiku/i, confidence: 0.9 },
'claude-opus-4.1': { pattern: /opus.*4\.1|4\.1.*opus/i, confidence: 0.9 },
'glm-4.6': { pattern: /glm|4\.6/i, confidence: 0.9 },
'claude-haiku': { pattern: /haiku(?!\.*4\.5)/i, confidence: 0.8 }
}
```
2. **Performance Pattern Recognition**:
```javascript
// Analyze execution patterns to identify model
const performanceSignatures = {
'claude-sonnet-4.5': { reasoning: 'nuanced', speed: 'fast', adaptability: 'high' },
'claude-haiku-4.5': { reasoning: 'focused', speed: 'very_fast', adaptability: 'high' },
'claude-opus-4.1': { reasoning: 'enhanced', speed: 'very_fast', adaptability: 'very_high' },
'glm-4.6': { reasoning: 'structured', speed: 'moderate', adaptability: 'medium' }
}
```
3. **Capability Assessment**:
```javascript
// Test specific capabilities
const capabilityTests = {
nuanced_reasoning: testAmbiguousScenario,
structured_execution: testLiteralInterpretation,
context_switching: testMultiTaskContext,
adaptive_learning: testPatternRecognition
}
```
## Model-Specific Configurations
### Claude Sonnet 4.5 Configuration
```json
{
"model_type": "claude-sonnet-4.5",
"capabilities": {
"reasoning_style": "nuanced",
"context_management": "adaptive",
"skill_loading": "progressive_disclosure",
"error_handling": "pattern_based",
"communication_style": "natural_flow"
},
"performance_targets": {
"execution_time_multiplier": 1.0,
"quality_score_target": 90,
"autonomy_level": "high",
"delegation_style": "parallel_context_merge"
},
"optimizations": {
"use_context_switching": true,
"apply_improvisation": true,
"weight_based_decisions": true,
"predictive_delegation": true
}
}
```
### Claude Haiku 4.5 Configuration
```json
{
"model_type": "claude-haiku-4.5",
"capabilities": {
"reasoning_style": "focused",
"context_management": "efficient",
"skill_loading": "selective_disclosure",
"error_handling": "fast_prevention",
"communication_style": "concise"
},
"performance_targets": {
"execution_time_multiplier": 0.8,
"quality_score_target": 88,
"autonomy_level": "medium",
"delegation_style": "focused_parallel"
},
"optimizations": {
"use_fast_execution": true,
"apply_focused_reasoning": true,
"efficient_delegation": true,
"streamlined_processing": true
}
}
```
### Claude Opus 4.1 Configuration
```json
{
"model_type": "claude-opus-4.1",
"capabilities": {
"reasoning_style": "enhanced",
"context_management": "predictive",
"skill_loading": "intelligent_progressive",
"error_handling": "predictive_prevention",
"communication_style": "insightful"
},
"performance_targets": {
"execution_time_multiplier": 0.9,
"quality_score_target": 95,
"autonomy_level": "very_high",
"delegation_style": "predictive_parallel"
},
"optimizations": {
"use_context_switching": true,
"apply_improvisation": true,
"anticipatory_actions": true,
"enhanced_pattern_learning": true
}
}
```
### GLM-4.6 Configuration
```json
{
"model_type": "glm-4.6",
"capabilities": {
"reasoning_style": "structured",
"context_management": "sequential",
"skill_loading": "complete_loading",
"error_handling": "rule_based",
"communication_style": "structured_explicit"
},
"performance_targets": {
"execution_time_multiplier": 1.25,
"quality_score_target": 88,
"autonomy_level": "medium",
"delegation_style": "sequential_clear"
},
"optimizations": {
"use_structured_decisions": true,
"explicit_instructions": true,
"sequential_processing": true,
"clear_handoffs": true
}
}
```
## Adaptive Execution Strategies
### Skill Loading Adaptation
**Claude Models**:
```javascript
function loadSkillsForClaude(skills) {
// Progressive disclosure with context merging
return skills.map(skill => ({
...skill,
loading_strategy: 'progressive',
context_aware: true,
weight_based: true
}));
}
```
**GLM Models**:
```javascript
function loadSkillsForGLM(skills) {
// Complete upfront loading with clear structure
return skills.map(skill => ({
...skill,
loading_strategy: 'complete',
explicit_criteria: true,
priority_sequenced: true
}));
}
```
### Communication Style Adaptation
**Output Formatting by Model**:
| Model | Terminal Style | File Report Style | Reasoning |
|-------|----------------|-------------------|-----------|
| Claude Sonnet | Natural flow | Insightful analysis | Nuanced communication |
| Claude 4.5 | Concise insights | Enhanced context | Predictive communication |
| GLM-4.6 | Structured lists | Detailed procedures | Explicit communication |
### Error Recovery Adaptation
**Claude Models**: Pattern-based prediction and contextual prevention
**GLM Models**: Rule-based detection and structured recovery protocols
## Capability Testing Functions
### Nuanced Reasoning Test
```javascript
function testNuancedReasoning() {
// Present ambiguous scenario requiring subtle judgment
// Evaluate response quality and contextual awareness
return score >= 0.8; // True for Claude models
}
```
### Structured Execution Test
```javascript
function testStructuredExecution() {
// Present clear, sequential task
// Evaluate adherence to structured approach
return score >= 0.8; // True for GLM models
}
```
## Model Detection Implementation
### Auto-Detection Function
```javascript
function detectModel() {
// Step 1: Check system context indicators
const contextResult = analyzeSystemContext();
// Step 2: Test capability patterns
const capabilityResult = testCapabilities();
// Step 3: Analyze performance signature
const performanceResult = analyzePerformancePattern();
// Step 4: Combine results with confidence scoring
return combineDetections(contextResult, capabilityResult, performanceResult);
}
```
### Configuration Loading
```javascript
function loadModelConfiguration(detectedModel) {
const baseConfig = getBaseModelConfig(detectedModel);
const adaptiveConfig = generateAdaptiveConfig(detectedModel);
return mergeConfigurations(baseConfig, adaptiveConfig);
}
```
## Usage Guidelines
### When to Apply Model Detection
1. **Plugin Initialization**: First load of any agent
2. **Agent Delegation**: Before delegating to specialized agents
3. **Skill Loading**: Before loading any skill package
4. **Error Recovery**: When selecting recovery strategy
5. **Performance Optimization**: When setting execution targets
### Integration Points
- **Orchestrator Agent**: Use for autonomous decision-making adaptation
- **All Specialized Agents**: Use for model-specific behavior
- **Skill System**: Use for loading strategy selection
- **Quality Controller**: Use for model-appropriate quality targets
## Fallback Strategy
If model detection fails:
1. **Default to Conservative Settings**: Use structured, explicit approach
2. **Basic Capability Tests**: Run simplified detection tests
3. **Universal Configuration**: Apply cross-model compatible settings
4. **Performance Monitoring**: Continuously assess and adapt
## Validation Metrics
### Detection Accuracy
- Target: >95% correct model identification
- Measurement: Compare detected vs actual model capabilities
- Validation: Test across all supported models
### Performance Improvement
- Target: >10% improvement for GLM models
- Target: >2% improvement for Claude models
- Measurement: Compare pre/post optimization performance
### Adaptation Success
- Target: >90% successful adaptation scenarios
- Measurement: Monitor successful autonomous operations
- Validation: Test with diverse task types
This skill ensures the Autonomous Agent Plugin performs optimally across all supported LLM models while maintaining backward compatibility and future-proofing for new models.