187 lines
5.4 KiB
Python
Executable File
187 lines
5.4 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import os
|
|
import sys
|
|
from dotenv import load_dotenv
|
|
|
|
|
|
def prompt_llm(prompt_text):
|
|
"""
|
|
Base Anthropic LLM prompting method using fastest model.
|
|
|
|
Args:
|
|
prompt_text (str): The prompt to send to the model
|
|
|
|
Returns:
|
|
str: The model's response text, or None if error
|
|
"""
|
|
load_dotenv()
|
|
|
|
api_key = os.getenv("__ANTHROPIC_API_KEY")
|
|
if not api_key:
|
|
return None
|
|
|
|
try:
|
|
import anthropic
|
|
|
|
client = anthropic.Anthropic(api_key=api_key)
|
|
|
|
message = client.messages.create(
|
|
model="claude-3-5-haiku-20241022", # Fastest Anthropic model
|
|
max_tokens=100,
|
|
temperature=0.7,
|
|
messages=[{"role": "user", "content": prompt_text}],
|
|
)
|
|
|
|
return message.content[0].text.strip()
|
|
|
|
except Exception:
|
|
return None
|
|
|
|
|
|
def generate_completion_message():
|
|
"""
|
|
Generate a completion message using Anthropic LLM.
|
|
|
|
Returns:
|
|
str: A natural language completion message, or None if error
|
|
"""
|
|
engineer_name = os.getenv("ENGINEER_NAME", "").strip()
|
|
|
|
if engineer_name:
|
|
name_instruction = f"Sometimes (about 30% of the time) include the engineer's name '{engineer_name}' in a natural way."
|
|
examples = f"""Examples of the style:
|
|
- Standard: "Work complete!", "All done!", "Task finished!", "Ready for your next move!"
|
|
- Personalized: "{engineer_name}, all set!", "Ready for you, {engineer_name}!", "Complete, {engineer_name}!", "{engineer_name}, we're done!" """
|
|
else:
|
|
name_instruction = ""
|
|
examples = """Examples of the style: "Work complete!", "All done!", "Task finished!", "Ready for your next move!" """
|
|
|
|
prompt = f"""Generate a short, friendly completion message for when an AI coding assistant finishes a task.
|
|
|
|
Requirements:
|
|
- Keep it under 10 words
|
|
- Make it positive and future focused
|
|
- Use natural, conversational language
|
|
- Focus on completion/readiness
|
|
- Do NOT include quotes, formatting, or explanations
|
|
- Return ONLY the completion message text
|
|
{name_instruction}
|
|
|
|
{examples}
|
|
|
|
Generate ONE completion message:"""
|
|
|
|
response = prompt_llm(prompt)
|
|
|
|
# Clean up response - remove quotes and extra formatting
|
|
if response:
|
|
response = response.strip().strip('"').strip("'").strip()
|
|
# Take first line if multiple lines
|
|
response = response.split("\n")[0].strip()
|
|
|
|
return response
|
|
|
|
|
|
def generate_agent_name():
|
|
"""
|
|
Generate a one-word agent name using Anthropic.
|
|
|
|
Returns:
|
|
str: A single-word agent name, or fallback name if error
|
|
"""
|
|
import random
|
|
|
|
# Example names to guide generation
|
|
example_names = [
|
|
"Phoenix", "Sage", "Nova", "Echo", "Atlas", "Cipher", "Nexus",
|
|
"Oracle", "Quantum", "Zenith", "Aurora", "Vortex", "Nebula",
|
|
"Catalyst", "Prism", "Axiom", "Helix", "Flux", "Synth", "Vertex"
|
|
]
|
|
|
|
# If no API key, return random fallback
|
|
if not os.getenv("__ANTHROPIC_API_KEY"):
|
|
return random.choice(example_names)
|
|
|
|
# Create examples string
|
|
examples_str = ", ".join(example_names[:10]) # Use first 10 as examples
|
|
|
|
prompt_text = f"""Generate exactly ONE unique agent/assistant name.
|
|
|
|
Requirements:
|
|
- Single word only (no spaces, hyphens, or punctuation)
|
|
- Abstract and memorable
|
|
- Professional sounding
|
|
- Easy to pronounce
|
|
- Similar style to these examples: {examples_str}
|
|
|
|
Generate a NEW name (not from the examples). Respond with ONLY the name, nothing else.
|
|
|
|
Name:"""
|
|
|
|
try:
|
|
# Use faster Haiku model with lower tokens for name generation
|
|
load_dotenv()
|
|
api_key = os.getenv("__ANTHROPIC_API_KEY")
|
|
if not api_key:
|
|
raise Exception("No API key")
|
|
|
|
import anthropic
|
|
client = anthropic.Anthropic(api_key=api_key)
|
|
|
|
message = client.messages.create(
|
|
model="claude-3-5-haiku-20241022", # Fast model
|
|
max_tokens=20,
|
|
temperature=0.7,
|
|
messages=[{"role": "user", "content": prompt_text}],
|
|
)
|
|
|
|
# Extract and clean the name
|
|
name = message.content[0].text.strip()
|
|
# Ensure it's a single word
|
|
name = name.split()[0] if name else "Agent"
|
|
# Remove any punctuation
|
|
name = ''.join(c for c in name if c.isalnum())
|
|
# Capitalize first letter
|
|
name = name.capitalize() if name else "Agent"
|
|
|
|
# Validate it's not empty and reasonable length
|
|
if name and 3 <= len(name) <= 20:
|
|
return name
|
|
else:
|
|
raise Exception("Invalid name generated")
|
|
|
|
except Exception:
|
|
# Return random fallback name
|
|
return random.choice(example_names)
|
|
|
|
|
|
def main():
|
|
"""Command line interface for testing."""
|
|
import json
|
|
|
|
if len(sys.argv) > 1:
|
|
if sys.argv[1] == "--completion":
|
|
message = generate_completion_message()
|
|
if message:
|
|
print(message)
|
|
else:
|
|
print("Error generating completion message")
|
|
elif sys.argv[1] == "--agent-name":
|
|
# Generate agent name (no input needed)
|
|
name = generate_agent_name()
|
|
print(name)
|
|
else:
|
|
prompt_text = " ".join(sys.argv[1:])
|
|
response = prompt_llm(prompt_text)
|
|
if response:
|
|
print(response)
|
|
else:
|
|
print("Error calling Anthropic API")
|
|
else:
|
|
print("Usage: ./anth.py 'your prompt here' or ./anth.py --completion or ./anth.py --agent-name")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main()
|