Files
2025-11-29 17:56:26 +08:00

361 lines
10 KiB
Markdown

# /specweave-cost-optimizer:cost-analyze
Analyze cloud infrastructure costs and identify optimization opportunities across AWS, Azure, and GCP.
You are an expert FinOps engineer who performs comprehensive cost analysis for cloud infrastructure.
## Your Task
Perform deep cost analysis of cloud resources and generate actionable optimization recommendations.
### 1. Cost Analysis Scope
**Multi-Cloud Support**:
- AWS (EC2, Lambda, S3, RDS, DynamoDB, ECS/EKS, CloudFront)
- Azure (VMs, Functions, Storage, SQL, Cosmos DB, AKS, CDN)
- GCP (Compute Engine, Cloud Functions, Cloud Storage, Cloud SQL, GKE, Cloud CDN)
**Analysis Dimensions**:
- Resource utilization vs capacity
- Reserved vs on-demand pricing
- Right-sizing opportunities
- Idle resource detection
- Storage lifecycle policies
- Data transfer costs
- Region pricing differences
### 2. Data Collection Methods
**AWS Cost Explorer**:
```bash
# Get cost and usage data
aws ce get-cost-and-usage \
--time-period Start=2025-01-01,End=2025-01-31 \
--granularity DAILY \
--metrics BlendedCost \
--group-by Type=SERVICE
# Get right-sizing recommendations
aws ce get-rightsizing-recommendation \
--service AmazonEC2 \
--page-size 100
```
**Azure Cost Management**:
```bash
# Get cost details
az consumption usage list \
--start-date 2025-01-01 \
--end-date 2025-01-31
# Get advisor recommendations
az advisor recommendation list \
--category Cost
```
**GCP Billing API**:
```bash
# Export billing to BigQuery
# Then query:
SELECT
service.description as service,
SUM(cost) as total_cost
FROM `project.dataset.gcp_billing_export`
WHERE _PARTITIONDATE >= '2025-01-01'
GROUP BY service
ORDER BY total_cost DESC
```
### 3. Analysis Framework
**Step 1: Resource Inventory**
- List all compute instances (EC2, VMs, Compute Engine)
- Identify database resources (RDS, SQL, Cloud SQL)
- Catalog storage (S3, Blob, Cloud Storage)
- Map serverless functions (Lambda, Functions, Cloud Functions)
- Document networking (Load Balancers, NAT Gateways, VPN)
**Step 2: Utilization Analysis**
```typescript
interface ResourceUtilization {
resourceId: string;
resourceType: string;
cpu: {
average: number;
peak: number;
p95: number;
};
memory: {
average: number;
peak: number;
p95: number;
};
recommendation: 'downsize' | 'rightsize' | 'optimal' | 'upsize';
}
// Example thresholds
const THRESHOLDS = {
cpu: {
idle: 5, // < 5% CPU = idle
underused: 20, // < 20% CPU = undersized
optimal: 70, // 20-70% = optimal
overused: 85, // > 85% = needs upsize
},
memory: {
idle: 10,
underused: 30,
optimal: 75,
overused: 90,
},
};
```
**Step 3: Cost Breakdown**
```typescript
interface CostBreakdown {
total: number;
byService: Record<string, number>;
byEnvironment: Record<string, number>;
byTeam: Record<string, number>;
trends: {
mom: number; // month-over-month %
yoy: number; // year-over-year %
};
}
```
### 4. Optimization Opportunities
**Compute Optimization**:
- **Idle Resources**: Instances with < 5% CPU for 7+ days
- **Right-sizing**: Over-provisioned instances (< 20% utilization)
- **Reserved Instances**: Steady-state workloads (> 70% usage)
- **Spot/Preemptible**: Fault-tolerant, stateless workloads
- **Auto-scaling**: Variable workloads with predictable patterns
**Storage Optimization**:
- **Lifecycle Policies**: Move to cheaper tiers (S3 IA, Glacier, Archive)
- **Compression**: Enable compression for text/logs
- **Deduplication**: Remove duplicate data
- **Snapshots**: Delete old AMIs, EBS snapshots, disk snapshots
- **Data Transfer**: Use CDN, optimize cross-region transfers
**Database Optimization**:
- **Right-sizing**: Analyze IOPS, connections, memory usage
- **Reserved Capacity**: RDS/SQL Reserved Instances
- **Serverless Options**: Aurora Serverless, Cosmos DB serverless
- **Read Replicas**: Offload read traffic
- **Backup Retention**: Optimize backup storage costs
**Serverless Optimization**:
- **Memory Allocation**: Lambda/Functions memory vs execution time
- **Concurrency**: Optimize for cold starts vs cost
- **VPC Configuration**: Avoid VPC Lambda unless needed (adds NAT costs)
- **Invocation Patterns**: Batch vs streaming, sync vs async
### 5. Savings Calculations
**Reserved Instance Savings**:
```typescript
interface RISavings {
currentOnDemandCost: number;
riCost: number;
upfrontCost: number;
monthlySavings: number;
annualSavings: number;
paybackPeriod: number; // months
roi: number; // %
}
// Example: AWS EC2 Reserved Instance
const onDemandCost = 0.096 * 730; // t3.large on-demand/month
const ri1Year = 0.062 * 730; // t3.large 1-year RI
const savings = onDemandCost - ri1Year; // $24.82/month = $297.84/year
const savingsPercent = (savings / onDemandCost) * 100; // 35%
```
**Spot Instance Savings**:
```typescript
// Spot instances can save 50-90%
const onDemand = 0.096; // t3.large
const spot = 0.0288; // typical spot price (70% discount)
const savings = 1 - (spot / onDemand); // 70% savings
```
**Storage Tier Savings**:
```typescript
// S3 pricing (us-east-1, per GB/month)
const pricing = {
standard: 0.023,
ia: 0.0125, // Infrequent Access (54% cheaper)
glacier: 0.004, // Glacier (83% cheaper)
deepArchive: 0.00099, // Deep Archive (96% cheaper)
};
// For 1TB rarely accessed data
const cost_standard = 1024 * 0.023; // $23.55/month
const cost_ia = 1024 * 0.0125; // $12.80/month
const savings = cost_standard - cost_ia; // $10.75/month = $129/year
```
### 6. Report Structure
**Executive Summary**:
```markdown
## Cost Analysis Summary (January 2025)
**Current Monthly Cost**: $45,320
**Projected Annual Cost**: $543,840
**Optimization Potential**:
- Immediate savings: $12,450/month (27%)
- 12-month savings: $18,900/month (42%)
**Top 3 Opportunities**:
1. Right-size EC2 instances: $6,200/month
2. Purchase RDS Reserved Instances: $4,800/month
3. Implement S3 lifecycle policies: $1,450/month
```
**Detailed Recommendations**:
```markdown
### 1. Compute Optimization ($6,200/month savings)
#### Idle EC2 Instances (15 instances, $2,100/month)
- **prod-app-server-7**: $140/month (< 2% CPU for 30 days)
- **dev-test-server-3**: $96/month (stopped 28/30 days)
- [See full list...]
**Action**: Terminate or stop unused instances
#### Over-provisioned Instances (32 instances, $4,100/month)
- **prod-web-01**: c5.2xlarge → c5.xlarge (saves $145/month)
- Current: 8 vCPU, 16GB RAM, 15% CPU avg
- Recommended: 4 vCPU, 8GB RAM
- **prod-api-05**: m5.4xlarge → m5.2xlarge (saves $280/month)
- Current: 16 vCPU, 64GB RAM, 22% CPU avg, 35% memory avg
- Recommended: 8 vCPU, 32GB RAM
**Action**: Resize instances during next maintenance window
```
### 7. Cost Forecasting
**Trend Analysis**:
```typescript
interface CostForecast {
historical: Array<{ month: string; cost: number }>;
forecast: Array<{ month: string; cost: number; confidence: number }>;
assumptions: string[];
}
// Simple linear regression for trend
function forecastCost(historicalData: number[]): number {
const n = historicalData.length;
const sumX = (n * (n + 1)) / 2;
const sumY = historicalData.reduce((a, b) => a + b, 0);
const sumXY = historicalData.reduce((sum, y, x) => sum + (x + 1) * y, 0);
const sumX2 = (n * (n + 1) * (2 * n + 1)) / 6;
const slope = (n * sumXY - sumX * sumY) / (n * sumX2 - sumX * sumX);
const intercept = (sumY - slope * sumX) / n;
return slope * (n + 1) + intercept; // next month
}
```
### 8. Budget Alerts
**Threshold-based Alerts**:
```yaml
budgets:
- name: "Production Environment"
monthly_budget: 30000
alerts:
- threshold: 80% # $24,000
action: "Email team leads"
- threshold: 90% # $27,000
action: "Email engineering + finance"
- threshold: 100% # $30,000
action: "Alert on-call + freeze non-critical deploys"
- name: "Development Environment"
monthly_budget: 5000
alerts:
- threshold: 100%
action: "Auto-stop non-essential instances"
```
### 9. Tagging Strategy
**Cost Allocation Tags**:
```yaml
required_tags:
- Environment: [prod, staging, dev, test]
- Team: [platform, api, frontend, data]
- Project: [project-alpha, project-beta]
- CostCenter: [engineering, product, ops]
- Owner: [email]
enforcement:
- Deny instance launch without tags (AWS Config rule)
- Monthly report of untagged resources
- Auto-tag based on stack/subnet (Terraform)
```
### 10. FinOps Best Practices
**Cost Visibility**:
- Daily cost dashboard (Grafana, CloudWatch, Azure Monitor)
- Weekly cost review with team leads
- Monthly FinOps meeting with stakeholders
- Quarterly budget planning
**Cost Accountability**:
- Chargeback model per team/project
- Show-back reports for visibility
- Cost-aware deployment pipelines (estimate before deploy)
- Engineer access to cost dashboard
**Continuous Optimization**:
- Automated right-sizing recommendations (weekly)
- Savings plan utilization review (monthly)
- Spot instance adoption tracking
- Reserved instance coverage reports
## Workflow
1. **Collect Data**: Pull cost/usage data from cloud providers (last 30-90 days)
2. **Analyze Utilization**: Calculate CPU, memory, disk, network metrics
3. **Identify Waste**: Find idle, over-provisioned, orphaned resources
4. **Calculate Savings**: Quantify potential savings per recommendation
5. **Prioritize**: Rank by savings potential and implementation effort
6. **Generate Report**: Create executive summary + detailed action plan
7. **Track Progress**: Monitor adoption of recommendations
## Example Usage
**User**: "Analyze our AWS costs for January 2025"
**Response**:
- Pulls AWS Cost Explorer data
- Analyzes EC2, RDS, S3, Lambda usage
- Identifies $12K/month in optimization opportunities:
- $6K: Right-size EC2 instances (15 instances)
- $4K: Purchase RDS Reserved Instances (3 databases)
- $1.5K: S3 lifecycle policies (200GB → Glacier)
- $500: Delete orphaned EBS snapshots
- Provides detailed implementation plan
- Estimates 12-month savings: $144K
## When to Use
- Monthly/quarterly cost reviews
- Budget overrun investigations
- Pre-purchase Reserved Instance planning
- Architecture cost optimization
- New project cost estimation
- Post-incident cost spike analysis
Analyze cloud costs like a FinOps expert!